GSTDTAP  > 资源环境科学
DOI10.1029/2019WR026675
Hyporheic exchange driven by submerged rigid vegetation: a modeling study
Yue Yuan; Xiaobing Chen; M. Bayani Cardenas; Xiaofeng Liu; Li Chen
2021-05-22
发表期刊Water Resources Research
出版年2021
英文摘要

Flow-vegetation interaction affects fluid flow hydraulics and associated material transport in river corridors. Concomitant changes in pressure within the flow field due to the presence of vegetation may act as a driver for the formation of hyporheic flow across the sediment-water interface. This potentially important process, however, has yet to be studied. In order to investigate vegetation-induced hyporheic exchange, a series of numerical models of interlinked surface-subsurface flow modified by plant stems was conducted. Periodically staggered plant stem arrays on a flat sediment bed were considered within a coupled multiphysics computational fluid dynamics approach. Plants were idealized as rigid cylinders and arranged in different streamwise and spanwise spacing distances. Each vegetation array was then subjected to a broad range of flow Reynolds Numbers (Re). The results showed that hyporheic flow occurs in all conditions with the presence of vegetation. The vegetation-induced hyporheic flux is found to be a function of Re via a power law. The flux increases with inter-stem space until the space reaches the distance that rigid stems no longer affect the flow structures in the vicinity of each other. Larger inter-vegetation distances lead to a larger hyporheic zone. A direct comparison with bedform-induced hyporheic flow showed that vegetation can induce higher hyporheic flux through relatively shallower exchange zones. The results of all the simulations were synthesized into predictive models for hyporheic flux, bulk residence time and exchange depth based on drag coefficient, vegetation density and Reynolds Number.

Rivers have complex beds and banks. When rivers flow over complex surfaces and through irregular paths, fluid pressure differences arise. The differences in fluid pressure drive river water to exchange with the permeable and porous riverbed by infiltration of river water into the bed where pressure is high and interstitial water exfiltration where the pressure is low. This hyporheic exchange is an important river function, ecologically vital, and impacts water quality. One common feature that adds complexity to rivers is aquatic vegetation. We hypothesized that aquatic vegetation, as river water flows through them, can drive hyporheic exchange. We tested this idea through computational simulations of river flow through vegetation and then linked these with simulations of hyporheic flow through sediment. We found that vegetation induces hyporheic exchange that is at least of similar magnitude as and usually larger than exchange driven by bedforms. How much water goes into the hyporheic zone, how deep the water penetrates and how long the water stays within the zone are all determined by the arrangement of the vegetation

This article is protected by copyright. All rights reserved.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/328687
专题资源环境科学
推荐引用方式
GB/T 7714
Yue Yuan,Xiaobing Chen,M. Bayani Cardenas,et al. Hyporheic exchange driven by submerged rigid vegetation: a modeling study[J]. Water Resources Research,2021.
APA Yue Yuan,Xiaobing Chen,M. Bayani Cardenas,Xiaofeng Liu,&Li Chen.(2021).Hyporheic exchange driven by submerged rigid vegetation: a modeling study.Water Resources Research.
MLA Yue Yuan,et al."Hyporheic exchange driven by submerged rigid vegetation: a modeling study".Water Resources Research (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yue Yuan]的文章
[Xiaobing Chen]的文章
[M. Bayani Cardenas]的文章
百度学术
百度学术中相似的文章
[Yue Yuan]的文章
[Xiaobing Chen]的文章
[M. Bayani Cardenas]的文章
必应学术
必应学术中相似的文章
[Yue Yuan]的文章
[Xiaobing Chen]的文章
[M. Bayani Cardenas]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。