GSTDTAP  > 气候变化
Peptide nanoparticles marked for in vitro visualization
admin
2021-05-28
发布年2021
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Self-assembled peptide nanoparticles for enhanced dark-field and hyperspectral imaging. (A) Illustration of the fabrication of peptide nanoparticles based on covalent assembly of dipeptide and genipin. (B) Enhanced dark-field and hyperspectral... view more 

Credit: Chinese Academy of Sciences, Kazan Federal University

The work was conducted under the auspices of the Russian Foundation for Basic Research and organizations-participants of the BRICS framework program in science, technology and innovation; the grant title is "Nanosized peptide-based biomaterials for photodynamic diagnostics of tumors".

Project lead, Chief Research Associate of KFU's Bionanotechnology Lab Rawil Fakhrullin commented on the results, "The development of materials for theranostics (simultaneous early diagnosis and therapy of diseases) is one of the most urgent tasks in modern chemistry and biomedicine. A feature of such materials is the combination of at least two functions: sensory and therapeutic. Various nanoparticles capable of targeted drug delivery into cells and tissues are used as carrier particles in theranostic formulations. The most promising are organic nanoparticles. Peptide nanomaterials are now actively used as drug delivery vehicles. The interest in peptide complexes is stimulated by their biological compatibility and safety, as well as the modification of their properties using various covalently attached ligands."

Using covalent self-assembly, the team managed to synthesize new functional supramolecular systems based on dipeptides and genipin (a cross-sewing agent derived from plant material). The particles are polymer spheres 200-300 nanometers in diameter.

"The obtained peptide complexes are highly stable, have a low level of auto-fluorescence and can be used for in vitro labeling of cells, for example, to detect migration, including the integration of stem cells into the damaged area and distribution in multicellular clusters," said Fakhrullin. "The specifics of this work was the use of hyperspectral microscopy for visualization of nanoparticles in human cells and the body of Turbatrix aceti nematodes. We have established that peptide nanoparticles have the ability to efficiently scatter light and can be identified by characteristic spectral curves in visible light. This property of peptide nanoparticles makes possible their visualization without the use of fluorescent labels in living cells and organisms, without lengthy sample preparation and specific coloring."

He also said that studying the interactions between peptide nanomaterials and cells or organisms is crucial for understanding the biological function and the mechanism of action of peptide materials. This is very important for further clinical practice.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/327954
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Peptide nanoparticles marked for in vitro visualization. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。