GSTDTAP  > 气候变化
Plant Flowering in Low-Nitrogen Soils: A Mechanism Revealed
admin
2021
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)

Scientists from Japan, Europe and the USA have described a pathway leading to the accelerated flowering of plants in low-nitrogen soils. These findings could eventually lead to increases in agricultural production.

Nitrogen is one of the three macronutrients required by plants for growth and development, along with phosphorus and potassium. Nitrogen-rich condition induces plant growth, particularly the growth of stems and leaves, while delaying flowering. On the other hand, in some plants, low-nitrogen conditions lead to a change from growth mode to reproductive mode, therefore accelerating flowering. However, the molecular mechanisms that regulate flowering under these conditions are not known.

A team of scientists led by Associate Professor Takeo Sato of Hokkaido University's Graduate School of Life Science has revealed the molecular mechanism responsible for the acceleration of flowering in Arabidopsis under low nitrogen conditions. Their findings were published in the journal Proceedings of the National Academy of Sciences (PNAS).

Arabidopsis, a cruciferous plant, is well known as a model plant in biology and has an extensive database of its protein expression. In the current study, the team first identified a set of proteins involved in flowering that became active as a result of changes in nitrogen level. One of these was the gene regulation factor FLOWERING BHLH 4 (FBH4). Through experiments using FBH4 deficient plants, this protein was found to be responsible for accelerated flowering under low-nitrogen conditions.

Further investigation suggested that FBH4 is extensively phosphorylated by another protein called SnRK1. Low-nitrogen conditions suppress SnRK1 activity, which in turn results in the dephosphorylation of FBH4. The dephosphorylated FBH4 moves to the nucleus to activate genes responsible for flowering. Dephosphorylated FBH4 is also responsible for controlling the expression of other genes vital for plant survival under low nitrogen conditions, particularly those related to nitrogen recycling and remobilization.

The scientists concluded that, in response to inadequate nitrogen, Arabidopsis plants appear to precisely control gene expression related to developmental and metabolic processes required for flowering through FBH4. "The FBH family of genes is present in major crop plants," says Takeo Sato. "Crop plants exhibit early flowering under low-nitrogen conditions; if we can control FBH activities in these crop plants, it might be an effective way to sustainably increase agricultural production."


Story Source:

Materials provided by Hokkaido University. Note: Content may be edited for style and length.


Journal Reference:

  1. Miho Sanagi, Shoki Aoyama, Akio Kubo, Yu Lu, Yasutake Sato, Shogo Ito, Mitsutomo Abe, Nobutaka Mitsuda, Masaru Ohme-Takagi, Takatoshi Kiba, Hirofumi Nakagami, Filip Rolland, Junji Yamaguchi, Takato Imaizumi, Takeo Sato. Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis. Proceedings of the National Academy of Sciences, 2021; 118 (19): e2022942118 DOI: 10.1073/pnas.2022942118

Cite This Page:

Hokkaido University. "Plant flowering in low-nitrogen soils: A mechanism revealed." ScienceDaily. ScienceDaily, 28 May 2021. .
Hokkaido University. (2021, May 28). Plant flowering in low-nitrogen soils: A mechanism revealed. ScienceDaily. Retrieved May 28, 2021 from www.sciencedaily.com/releases/2021/05/210528114050.htm
Hokkaido University. "Plant flowering in low-nitrogen soils: A mechanism revealed." ScienceDaily. www.sciencedaily.com/releases/2021/05/210528114050.htm (accessed May 28, 2021).

URL查看原文
来源平台Science Daily
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/327433
专题气候变化
推荐引用方式
GB/T 7714
admin. Plant Flowering in Low-Nitrogen Soils: A Mechanism Revealed. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。