GSTDTAP  > 气候变化
DOI10.1126/science.aaz2740
Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis
Marlies P. Rossmann; Karen Hoi; Victoria Chan; Brian J. Abraham; Song Yang; James Mullahoo; Malvina Papanastasiou; Ying Wang; Ilaria Elia; Julie R. Perlin; Elliott J. Hagedorn; Sara Hetzel; Raha Weigert; Sejal Vyas; Partha P. Nag; Lucas B. Sullivan; Curtis R. Warren; Bilguujin Dorjsuren; Eugenia Custo Greig; Isaac Adatto; Chad A. Cowan; Stuart L. Schreiber; Richard A. Young; Alexander Meissner; Marcia C. Haigis; Siegfried Hekimi; Steven A. Carr; Leonard I. Zon
2021-05-14
发表期刊Science
出版年2021
英文摘要Lineage-specific regulators direct cell fate decisions, but the precise mechanisms are not well known. Using an in vivo chemical suppressor screen of a bloodless zebrafish mutant, Rossmann et al. show that the lineage-specific chromatin factor tif1γ directly regulates mitochondrial genes to drive red blood cell differentiation. Loss of tif1γ reduces coenzyme Q synthesis and function, impeding mitochondrial respiration and leading to epigenetic alterations and repression of erythropoiesis. The loss of blood in the mutant fish can be rescued by the addition of coenzyme Q. This work establishes a mechanism by which a chromatin factor tunes a metabolic pathway in a tissue-specific manner. Science , this issue p. [716][1] Transcription and metabolism both influence cell function, but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. We discovered, using a chemical suppressor screen, that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma ( tif1γ ). This rescue depends on the functional link of DHODH to mitochondrial respiration. The transcription elongation factor TIF1γ directly controls coenzyme Q (CoQ) synthesis gene expression. Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon ’s bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage. [1]: /lookup/doi/10.1126/science.aaz2740
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/326816
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Marlies P. Rossmann,Karen Hoi,Victoria Chan,et al. Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis[J]. Science,2021.
APA Marlies P. Rossmann.,Karen Hoi.,Victoria Chan.,Brian J. Abraham.,Song Yang.,...&Leonard I. Zon.(2021).Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis.Science.
MLA Marlies P. Rossmann,et al."Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Marlies P. Rossmann]的文章
[Karen Hoi]的文章
[Victoria Chan]的文章
百度学术
百度学术中相似的文章
[Marlies P. Rossmann]的文章
[Karen Hoi]的文章
[Victoria Chan]的文章
必应学术
必应学术中相似的文章
[Marlies P. Rossmann]的文章
[Karen Hoi]的文章
[Victoria Chan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。