GSTDTAP  > 气候变化
DOI10.1126/science.abh2283
Reversible fusion-fission fibers
Rodolfo Cruz-Silva; Ana Laura Elías
2021-05-07
发表期刊Science
出版年2021
英文摘要Materials scientists have long used highly coveted biomimetic techniques in the search for synthetic structural materials that resemble muscles and other natural fibers ([ 1 ][1]). Among these techniques, self-assembly processes inspired by cell fusion are gaining notoriety ([ 2 ][2]). Within biological systems, fission occurs when one entity can separate into two or more parts, and the opposite process, fusion, occurs when two or more parts merge into one object ([ 3 ][3]). These processes can be naturally triggered by stimuli present in the environment—such as light, temperature, or humidity—but are ultimately controlled by the organism's own metabolism. On page 614 of this issue, Chang et al. ([ 4 ][4]) demonstrate the assembly of wet-spun graphene oxide (GO) microfibers through a reversible solvent-triggered process, which is regulated by the individual fiber's chemistry and morphology, mimicking biological fusion. The fusion process of Chang et al. results in hierarchical assemblies that involve thousands of individual GO fibers (see the figure). When the fiber assemblies are immersed in a suitable solvent, the process can be reversed, resembling fission. Notably, the transition between the individual fibers and the complex yarn can be repeated without damaging the primary fiber structure, ultimately preserving the GO flakes and their arrangement. The authors also used this technique to prepare crosslinked nets and functional yarns that can capture and release foreign particles. This fusion-fission behavior has not been found in other ceramic or polymeric fibers, and it grants a new functionality to GO fibers that can be used to manufacture highly complex architectures with many applications. Humans have long relied on fibers to make clothes and various structural materials such as ropes and nets—from the primitive fibers used tens of thousands of years ago ([ 5 ][5]) to the modern functional fibers made using nanomaterials ([ 1 ][1]). In the 20th century, advanced fibers played a role in developing a myriad of technologies, including those used in aeronautics, electronics, and space exploration. Regardless of the era, fibers have been assembled hierarchically to form threads, yarns, ropes, and fabrics with different levels of complexity. As Chang et al. demonstrate, applying fusion and fission concepts previously studied in materials science through soft structures such as micelles and vacuoles is of paramount importance when making hierarchical fibers. Because modern fiber assembly techniques require complex machinery and a high-energy input, simplified fiber assembly processes are highly attractive, especially those with minimum energy requirements that can reduce the environmental footprint. Therefore, the development of a simplified and reversible fiber assembly process tackles one of the major challenges that human-made fibers have faced. ![Figure][6] Graphene oxide yarns Graphene oxide (GO) fibers are assembled through wet-spinning techniques from GO sheets. When multiple GO fibers are immersed in a suitable solvent, they assemble into a hierarchical yarn. This assembly can be reversed, mimicking biological fusion-fission cycles. GRAPHIC: N. DESAI/ SCIENCE BASED ON CHANG ET AL. ([ 4 ][4]) GO has attracted a lot of attention as a two-dimensional building block of complex architectures because of its water dispersibility, sub-nanometer-thin nature, synthesis scalability, and chemical reactivity. In the past decade, possibly inspired by the commercial success of carbon fibers, the wet-spinning technique has been used extensively for the integration of GO into fibers with micro- and nanometric diameters ([ 6 ][7]). Because GO fibers can be converted into electrically conductive fibers through reduction processes, they hold an enormous potential for multiple applications as sensors, electronic components, smart textiles, actuators, thermally conductive materials, and high-performance fibers, among others ([ 7 ][8]). Nevertheless, the industrial application of GO fibers has proven difficult. Developing processes to transform GO fibers into hierarchical assemblies like nonwoven fabrics, clothes, ropes, and nets ([ 8 ][9]), and possibly combining GO fibers with functional biological materials such as proteins ([ 9 ][10]), is necessary to achieve advanced functional nanocomposites useful for a broad range of applications. Low-energy, stimulus-based assembly of GO-based architectures stands as an attractive field with many possible applications where reversibility is key. Textile and high-performance multifilament fibers account for the immediate applications of this technology. A potential use for the fibers may lie in the controlled release and capture of foreign materials such as particles and organic compounds. This requires developing a fundamental understanding of the role played by the individual GO sheets and their nanoscale assembly in the fusion and fission cycles. Even though biological fiber assemblies exhibit a much higher level of complexity and involve multiple components, the reversible assembly of GO fibers mimics nature and holds the refreshing potential to move the field forward. Specifically, GO fiber–based architectures featuring self-healing ([ 9 ][10]), self-sensing, and self-powered actuation should be vigorously pursued to finally bring GO fibers into practical applications. 1. [↵][11]1. Z. F. Liu et al ., Science 349, 400 (2015). [OpenUrl][12][Abstract/FREE Full Text][13] 2. [↵][14]1. E. Rideau, 2. R. Dimova, 3. P. Schwille, 4. F. R. Wurm, 5. K. Landfester , Chem. Soc. Rev. 47, 8572 (2018). [OpenUrl][15][CrossRef][16] 3. [↵][17]1. B. Alberts , Molecular Biology of the Cell (Garland Science, 2008). 4. [↵][18]1. D. Chang et al ., Science 372, 614 (2021). [OpenUrl][19][Abstract/FREE Full Text][20] 5. [↵][21]1. E. Kvavadze et al ., Science 325, 1359 (2009). [OpenUrl][22][Abstract/FREE Full Text][23] 6. [↵][24]1. Z. Xu, 2. C. Gao , Acc. Chem. Res. 47, 1267 (2014). [OpenUrl][25][CrossRef][26][PubMed][27] 7. [↵][28]1. G. Xin et al ., Science 349, 1083 (2015). [OpenUrl][29][Abstract/FREE Full Text][30] 8. [↵][31]1. R. Cruz-Silva et al ., ACS Nano 8, 5959 (2014). [OpenUrl][32][CrossRef][33][PubMed][34] 9. [↵][35]1. M. C. Demirel, 2. M. Vural, 3. M. Terrones , Adv. Funct. Mater. 28, 1704990 (2018). [OpenUrl][36] Acknowledgments: The authors have a US patent (no. 9,284,193) for making graphene oxide films and fibers. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: pending:yes [7]: #ref-6 [8]: #ref-7 [9]: #ref-8 [10]: #ref-9 [11]: #xref-ref-1-1 "View reference 1 in text" [12]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLiu%26rft.auinit1%253DZ.%2BF.%26rft.volume%253D349%26rft.issue%253D6246%26rft.spage%253D400%26rft.epage%253D404%26rft.atitle%253DHierarchically%2Bbuckled%2Bsheath-core%2Bfibers%2Bfor%2Bsuperelastic%2Belectronics%252C%2Bsensors%252C%2Band%2Bmuscles%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaa7952%26rft_id%253Dinfo%253Apmid%252F26206929%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [13]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNDkvNjI0Ni80MDAiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzIvNjU0Mi81NzMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [14]: #xref-ref-2-1 "View reference 2 in text" [15]: {openurl}?query=rft.jtitle%253DChem.%2BSoc.%2BRev.%26rft.volume%253D47%26rft.spage%253D8572%26rft_id%253Dinfo%253Adoi%252F10.1039%252FC8CS00162F%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: /lookup/external-ref?access_num=10.1039/C8CS00162F&link_type=DOI [17]: #xref-ref-3-1 "View reference 3 in text" [18]: #xref-ref-4-1 "View reference 4 in text" [19]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DChang%26rft.auinit1%253DD.%26rft.volume%253D372%26rft.issue%253D6542%26rft.spage%253D614%26rft.epage%253D617%26rft.atitle%253DReversible%2Bfusion%2Band%2Bfission%2Bof%2Bgraphene%2Boxide-based%2Bfibers%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abb6640%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzIvNjU0Mi82MTQiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzIvNjU0Mi81NzMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [21]: #xref-ref-5-1 "View reference 5 in text" [22]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DKvavadze%26rft.auinit1%253DE.%26rft.volume%253D325%26rft.issue%253D5946%26rft.spage%253D1359%26rft.epage%253D1359%26rft.atitle%253D30%252C000-Year-Old%2BWild%2BFlax%2BFibers%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1175404%26rft_id%253Dinfo%253Apmid%252F19745144%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMjUvNTk0Ni8xMzU5IjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcyLzY1NDIvNTczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [24]: #xref-ref-6-1 "View reference 6 in text" [25]: {openurl}?query=rft.jtitle%253DAcc.%2BChem.%2BRes.%26rft.volume%253D47%26rft.spage%253D1267%26rft_id%253Dinfo%253Adoi%252F10.1021%252Far4002813%26rft_id%253Dinfo%253Apmid%252F24555686%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1021/ar4002813&link_type=DOI [27]: /lookup/external-ref?access_num=24555686&link_type=MED&atom=%2Fsci%2F372%2F6542%2F573.atom [28]: #xref-ref-7-1 "View reference 7 in text" [29]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DXin%26rft.auinit1%253DG.%26rft.volume%253D349%26rft.issue%253D6252%26rft.spage%253D1083%26rft.epage%253D1087%26rft.atitle%253DHighly%2Bthermally%2Bconductive%2Band%2Bmechanically%2Bstrong%2Bgraphene%2Bfibers%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaa6502%26rft_id%253Dinfo%253Apmid%252F26339027%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNDkvNjI1Mi8xMDgzIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcyLzY1NDIvNTczLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [31]: #xref-ref-8-1 "View reference 8 in text" [32]: {openurl}?query=rft.jtitle%253DACS%2BNano%26rft.volume%253D8%26rft.spage%253D5959%26rft_id%253Dinfo%253Adoi%252F10.1021%252Fnn501098d%26rft_id%253Dinfo%253Apmid%252F24796818%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [33]: /lookup/external-ref?access_num=10.1021/nn501098d&link_type=DOI [34]: /lookup/external-ref?access_num=24796818&link_type=MED&atom=%2Fsci%2F372%2F6542%2F573.atom [35]: #xref-ref-9-1 "View reference 9 in text" [36]: {openurl}?query=rft.jtitle%253DAdv.%2BFunct.%2BMater.%26rft.volume%253D28%26rft.spage%253D1704990%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/325927
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Rodolfo Cruz-Silva,Ana Laura Elías. Reversible fusion-fission fibers[J]. Science,2021.
APA Rodolfo Cruz-Silva,&Ana Laura Elías.(2021).Reversible fusion-fission fibers.Science.
MLA Rodolfo Cruz-Silva,et al."Reversible fusion-fission fibers".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Rodolfo Cruz-Silva]的文章
[Ana Laura Elías]的文章
百度学术
百度学术中相似的文章
[Rodolfo Cruz-Silva]的文章
[Ana Laura Elías]的文章
必应学术
必应学术中相似的文章
[Rodolfo Cruz-Silva]的文章
[Ana Laura Elías]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。