GSTDTAP  > 气候变化
DOI10.1126/science.abd8556
Going with the grains
Valla Fatemi; Michel H. Devoret
2021-04-30
发表期刊Science
出版年2021
英文摘要Metals and insulators are primitive materials for electrical applications when compared with semiconductor materials. Semiconductors involve a massive leap in technological complexity yet are essential for data processing applications. Unsurprisingly, superconducting quantum-coherent devices have therefore been realized only with combinations of metals and insulators. More recently, proposals involving exotic states of electronic matter that would protect quantum information from decoherence ([ 1 ][1], [ 2 ][2]) require integration of semiconducting and superconducting properties. Aluminum (superconductor) and indium arsenide (semiconductor) have been widely investigated and exhibit a high-quality interface ([ 3 ][3]). On p. 508 of this issue, Pendharkar et al. ([ 4 ][4]) provide a proof of principle for an approach that may expand the available materials for both superconductors and semiconductors for this integration of properties (see the photo). The history of electricity is instructive regarding the delicate nature of semiconductor materials. Metals and insulators were the basis of early applications of electricity in the 1800s because semiconductors were unreliable. Nearly a century passed before our understanding of semiconductor materials was advanced enough to gainfully apply them—most notably with the invention of the transistor in 1947, which is often associated with the dawn of the information age. Discoveries of more reliable and functional combinations of materials for semiconductor devices has been a major driver of innovation in digital computing hardware for the past 70 years. Now, nascent superconductor-semiconductor technology proposes to merge the electric field control of low-dimensional semiconductor devices with the dissipationless nonlinear properties of superconducting devices. This combination allows the construction of, for example, the superconducting analogs of parametrically driven devices for signal gain and frequency conversion. Together with a magnetic field, creating exotic physical objects such as Majorana bound states becomes possible, which may be used in qubits predicted to be inherently insensitive to a type of noise that is likely to cripple quantum computations. After some pioneering experimental results in 2012 ([ 5 ][5]), research became focused on the delicate process of fusing a semiconductor and a superconductor. A breakthrough in 2015 showed that aluminum and indium arsenide possesses a high crystalline continuity at their interface called epitaxy ([ 3 ][3]). Electrons can thus apparently coherently straddle the two materials and inherit both of their properties. Experiments showed that this combination produced satisfactory characteristics, which include a “hard” induced superconducting gap ([ 6 ][6]), meaning no spurious density of states at energies much lower than the characteristic energy of the superconducting state, and phenomena only possible with high electronic interface transparency ([ 7 ][7]). Pendharkar et al. 's results question the necessity of this epitaxial matching. The superconductor of choice is tin in the usually thermally unstable beta phase; this structural phase of tin is desirable for its superconducting transition temperature, which is about four times higher that of aluminum. Through a combination of low-temperature deposition and a capping layer of a robust oxide ([ 8 ][8]), the authors found that the tin film can be largely stabilized in its targeted beta phase. The semiconductor is indium antimonide, which has strong spin-orbit coupling and high electronic mobility. The authors describe several transport measurements that reveal that a hard superconducting gap is carved out of the density of states of this semiconductor ([ 9 ][9], [ 10 ][10]). Moreover, the hard gap is resilient to the application of a very high magnetic field, along with high interface transparencies. The interface producing these high-quality behaviors is not epitaxial; rather, it is merely locally abrupt, so that the atomic constituents of either material do not diffuse into each other. Also, the superconducting film is granular, with some grains found to be in the undesirable alpha phase. Thus, a better understanding of the relationship between material interfaces and electronic device quality is necessary to properly expand our materials inventory for superconductor-semiconductor heterojunctions. The authors point out that this specific materials combination has relevance to the pursuit of Majorana bound states; a much broader impact is possible by using the strategy to discover new combinations. Superconductors such as tin with a higher critical temperature may help the development of dissipationless field-effect transistors for ultralow noise applications in quantum information ([ 11 ][11]). Andreev qubits also may benefit, particularly in the direction of stronger spin-orbit coupling ([ 7 ][7], [ 12 ][12], [ 13 ][13]). We can even imagine bringing these thin-film techniques to conventional superconducting qubits that might benefit from the higher gap—for example, by providing greater immunity to the poisoning effects of high-frequency photons ([ 14 ][14]). Extension of these techniques to 2D superconductor-semiconductor heterostructures or selective-area growth systems will be crucial for scalability. Although the full feasibility of these applications is understandably still an open question, an important step has been made toward developing materials for them. 1. [↵][15]1. R. M. Lutchyn, 2. J. D. Sau, 3. S. Das Sarma , Phys. Rev. Lett. 105, 077001 (2010). [OpenUrl][16][CrossRef][17][PubMed][18] 2. [↵][19]1. Y. Oreg et al ., Phys. Rev. Lett. 105, 177002 (2010). [OpenUrl][20][CrossRef][21][PubMed][22] 3. [↵][23]1. P. Krogstrup et al ., Nat. Mater. 14, 400 (2015). [OpenUrl][24][CrossRef][25][PubMed][26] 4. [↵][27]1. M. Pendharkar et al ., Science 372, 508 (2020). [OpenUrl][28] 5. [↵][29]1. V. Mourik et al ., Science 336, 1003 (2012). [OpenUrl][30][Abstract/FREE Full Text][31] 6. [↵][32]1. W. Chang et al ., Nat. Nanotechnol. 10, 232 (2015). [OpenUrl][33][CrossRef][34][PubMed][35] 7. [↵][36]1. M. Hays et al ., Phys. Rev. Lett. 121, 047001 (2018). [OpenUrl][37] 8. [↵][38]1. D. J. Carrad et al ., Adv. Mater. 32, 1908411 (2020). [OpenUrl][39] 9. [↵][40]1. I. Gu et al ., Nano Lett. 17, 2690 (2017). [OpenUrl][41][CrossRef][42][PubMed][43] 10. [↵][44]1. S. Gazibegovic et al ., Nature 548, 434 (2017). [OpenUrl][45][CrossRef][46][PubMed][47] 11. [↵][48]1. A. A. Clerk et al ., Rev. of Mod. Phys. 82, 1155 (2010). [OpenUrl][49] 12. [↵][50]1. L. Tosi et al ., Phys. Rev. X 9, 011010 (2019). [OpenUrl][51] 13. [↵][52]1. M. Hays et al ., Nat. Phys. 1 (2020). 14. [↵][53]1. M. Houzet, 2. K. Serniak, 3. G. Catelani, 4. M. H. Devoret, 5. L. I. Glazman , Phys. Rev. Lett. 123, 107704 (2019). [OpenUrl][54] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: #ref-13 [14]: #ref-14 [15]: #xref-ref-1-1 "View reference 1 in text" [16]: {openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DLutchyn%26rft.auinit1%253DR.%2BM.%26rft.volume%253D105%26rft.issue%253D7%26rft.spage%253D077001%26rft.epage%253D077001%26rft.atitle%253DMajorana%2Bfermions%2Band%2Ba%2Btopological%2Bphase%2Btransition%2Bin%2Bsemiconductor-superconductor%2Bheterostructures.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.105.077001%26rft_id%253Dinfo%253Apmid%252F20868069%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [17]: /lookup/external-ref?access_num=10.1103/PhysRevLett.105.077001&link_type=DOI [18]: /lookup/external-ref?access_num=20868069&link_type=MED&atom=%2Fsci%2F372%2F6541%2F464.atom [19]: #xref-ref-2-1 "View reference 2 in text" [20]: {openurl}?query=rft.jtitle%253DPhysical%2BReview%2BLetters%26rft.stitle%253DPhysical%2BReview%2BLetters%26rft.aulast%253DOreg%26rft.auinit1%253DY.%26rft.volume%253D105%26rft.issue%253D17%26rft.spage%253D177002%26rft.epage%253D177002%26rft.atitle%253DHelical%2Bliquids%2Band%2BMajorana%2Bbound%2Bstates%2Bin%2Bquantum%2Bwires.%26rft_id%253Dinfo%253Adoi%252F10.1103%252FPhysRevLett.105.177002%26rft_id%253Dinfo%253Apmid%252F21231073%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/external-ref?access_num=10.1103/PhysRevLett.105.177002&link_type=DOI [22]: /lookup/external-ref?access_num=21231073&link_type=MED&atom=%2Fsci%2F372%2F6541%2F464.atom [23]: #xref-ref-3-1 "View reference 3 in text" [24]: {openurl}?query=rft.jtitle%253DNat.%2BMater.%26rft.volume%253D14%26rft.spage%253D400%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnmat4176%26rft_id%253Dinfo%253Apmid%252F25581626%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [25]: /lookup/external-ref?access_num=10.1038/nmat4176&link_type=DOI [26]: /lookup/external-ref?access_num=25581626&link_type=MED&atom=%2Fsci%2F372%2F6541%2F464.atom [27]: #xref-ref-4-1 "View reference 4 in text" [28]: {openurl}?query=rft.jtitle%253DScience%26rft.volume%253D372%26rft.spage%253D508%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: #xref-ref-5-1 "View reference 5 in text" [30]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1222360%26rft_id%253Dinfo%253Apmid%252F22499805%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [31]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMzYvNjA4NC8xMDAzIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcyLzY1NDEvNDY0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [32]: #xref-ref-6-1 "View reference 6 in text" [33]: {openurl}?query=rft.jtitle%253DNat.%2BNanotechnol.%26rft.volume%253D10%26rft.spage%253D232%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnnano.2014.306%26rft_id%253Dinfo%253Apmid%252F25581886%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [34]: /lookup/external-ref?access_num=10.1038/nnano.2014.306&link_type=DOI [35]: /lookup/external-ref?access_num=25581886&link_type=MED&atom=%2Fsci%2F372%2F6541%2F464.atom [36]: #xref-ref-7-1 "View reference 7 in text" [37]: {openurl}?query=rft.jtitle%253DPhys.%2BRev.%2BLett.%26rft.volume%253D121%26rft.spage%253D047001%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: #xref-ref-8-1 "View reference 8 in text" [39]: {openurl}?query=rft.jtitle%253DAdv.%2BMater.%26rft.volume%253D32%26rft.spage%253D1908411%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: #xref-ref-9-1 "View reference 9 in text" [41]: {openurl}?query=rft.jtitle%253DNano%2BLett.%26rft.volume%253D17%26rft.spage%253D2690%26rft_id%253Dinfo%253Adoi%252F10.1021%252Facs.nanolett.7b00540%26rft_id%253Dinfo%253Apmid%252F28355877%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [42]: /lookup/external-ref?access_num=10.1021/acs.nanolett.7b00540&link_type=DOI [43]: /lookup/external-ref?access_num=28355877&link_type=MED&atom=%2Fsci%2F372%2F6541%2F464.atom [44]: #xref-ref-10-1 "View reference 10 in text" [45]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D548%26rft.spage%253D434%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature23468%26rft_id%253Dinfo%253Apmid%252F28836603%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [46]: /lookup/external-ref?access_num=10.1038/nature23468&link_type=DOI [47]: /lookup/external-ref?access_num=28836603&link_type=MED&atom=%2Fsci%2F372%2F6541%2F464.atom [48]: #xref-ref-11-1 "View reference 11 in text" [49]: {openurl}?query=rft.jtitle%253DRev.%2Bof%2BMod.%2BPhys.%26rft.volume%253D82%26rft.spage%253D1155%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [50]: #xref-ref-12-1 "View reference 12 in text" [51]: {openurl}?query=rft.jtitle%253DPhys.%2BRev.%2BX%26rft.volume%253D9%26rft.spage%253D011010%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [52]: #xref-ref-13-1 "View reference 13 in text" [53]: #xref-ref-14-1 "View reference 14 in text" [54]: {openurl}?query=rft.jtitle%253DPhys.%2BRev.%2BLett.%26rft.volume%253D123%26rft.spage%253D107704%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/325023
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Valla Fatemi,Michel H. Devoret. Going with the grains[J]. Science,2021.
APA Valla Fatemi,&Michel H. Devoret.(2021).Going with the grains.Science.
MLA Valla Fatemi,et al."Going with the grains".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Valla Fatemi]的文章
[Michel H. Devoret]的文章
百度学术
百度学术中相似的文章
[Valla Fatemi]的文章
[Michel H. Devoret]的文章
必应学术
必应学术中相似的文章
[Valla Fatemi]的文章
[Michel H. Devoret]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。