GSTDTAP  > 气候变化
DOI10.1111/gcb.15622
Marine heatwaves depress metabolic activity and impair cellular acid–base homeostasis in reef‐building corals regardless of bleaching susceptibility
Teegan Innis; Luella Allen‐; Waller; Kristen T. Brown; Wesley Sparagon; Christopher Carlson; Elisa Kruse; Ariana S. Huffmyer; Craig E. Nelson; Hollie M. Putnam; Katie L. Barott
2021-04-14
发表期刊Global Change Biology
出版年2021
英文摘要

Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching‐resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular‐level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching‐resistant and bleaching‐susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching‐susceptible corals had lower intracellular pH than bleaching‐resistant corals at the peak of bleaching for both symbiont‐hosting and symbiont‐free cells, indicating greater disruption of acid–base homeostasis in bleaching‐susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid–base regulation was significantly impaired at the cellular level even in bleaching‐resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid–base regulation may further exacerbate the physiological effects of climate change.

领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/322781
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Teegan Innis,Luella Allen‐,Waller,等. Marine heatwaves depress metabolic activity and impair cellular acid–base homeostasis in reef‐building corals regardless of bleaching susceptibility[J]. Global Change Biology,2021.
APA Teegan Innis.,Luella Allen‐.,Waller.,Kristen T. Brown.,Wesley Sparagon.,...&Katie L. Barott.(2021).Marine heatwaves depress metabolic activity and impair cellular acid–base homeostasis in reef‐building corals regardless of bleaching susceptibility.Global Change Biology.
MLA Teegan Innis,et al."Marine heatwaves depress metabolic activity and impair cellular acid–base homeostasis in reef‐building corals regardless of bleaching susceptibility".Global Change Biology (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Teegan Innis]的文章
[Luella Allen‐]的文章
[Waller]的文章
百度学术
百度学术中相似的文章
[Teegan Innis]的文章
[Luella Allen‐]的文章
[Waller]的文章
必应学术
必应学术中相似的文章
[Teegan Innis]的文章
[Luella Allen‐]的文章
[Waller]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。