GSTDTAP  > 地球科学
Curiosity rover explores stratigraphy of Gale crater
admin
2021-04-08
发布年2021
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)
IMAGE

IMAGE: View of Mount Sharp, Mars, with buttes showing main stratigraphy of the sulfate-bearing unit to be explored by the Curiosity rover, and expected ancient environments based on observed sedimentary structures.... view more 

Credit: Rapin et al., Geology

Boulder, Colo., USA: Gale Crater's central sedimentary mound (Aeolis Mons or, informally, Mount Sharp) is a 5.5-km-tall remnant of the infilling and erosion of this ancient impact crater. Given its thickness and age, Mount Sharp preserves one of the best records of early Martian climatic, hydrological, and sedimentary history.

In this paper, published today in Geology, William Rapin and colleagues present the first description of key facies in the sulfate-bearing unit, recently observed in the distance by the rover, and propose a model for changes in depositional environments.

The basal part of this sedimentary sequence is ahead of the Curiosity rover traverse and was recently analyzed with unprecedented resolution by the rover cameras. The telescopic imager of the ChemCam instrument was used here in particular, and its images show sedimentary structures that reveal evolution of environments on Mars during the Hesperian age (3.7-2.9 billion years ago).

Analysis of the structures shows that on top of the ancient lake deposits currently explored by the rover (Murray formation), vast aeolian deposits were formed by a dune field during a prolonged dry climatic episode. Yet, higher up, the stratigraphy reveals the resumption of wetter climatic conditions.

The climate of Mars appears therefore to have fluctuated several times at high order between dry conditions and wet conditions in the Hesperian age, a period during which Mars' environment is thought to have changed globally due to the gradual loss of its atmosphere to space.

###

FEATURED ARTICLE

Alternating wet and dry depositional environments recorded in the stratigraphy of Mount Sharp at Gale crater, Mars
William Rapin et al., william.rapin@irap.omp.eu, Institut de Recherche en Astrophysique et Planétologie, Toulouse, France
URL: https://pubs.geoscienceworld.org/gsa/geology/article/doi/10.1130/G48519.1/596028/Alternating-wet-and-dry-depositional-environments

GEOLOGY articles are online at https://geology.geoscienceworld.org/content/early/recent. Representatives of the media may obtain complimentary articles by contacting Kea Giles at the e-mail address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOLOGY in articles published. Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.
https://www.geosociety.org

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/321598
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. Curiosity rover explores stratigraphy of Gale crater. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。