GSTDTAP  > 气候变化
New Batteries Give Jolt to Renewables, Energy Storage
admin
2021-04-05
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)

The cost of harvesting solar energy has dropped so much in recent years that it's giving traditional energy sources a run for their money. However, the challenges of energy storage -- which require the capacity to bank an intermittent and seasonally variable supply of solar energy -- have kept the technology from being economically competitive.

Cornell University researchers led by Lynden Archer, Dean and Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. Now, they have shown that a new technique incorporating aluminum results in rechargeable batteries that offer up to 10,000 error-free cycles.

This new kind of battery could provide a safer and more environmentally friendly alternative to lithium-ion batteries, which currently dominate the market but are slow to charge and have a knack for catching fire.

The team's paper, "Regulating Electrodeposition Morphology in High-Capacity Aluminium and Zinc Battery Anodes Using Interfacial Metal-Substrate Bonding," published in Nature Energy.

Among the advantages of aluminum is that it is abundant in the earth's crust, it is trivalent and light, and it therefore has a high capacity to store more energy than many other metals. However, aluminum can be tricky to integrate into a battery's electrodes. It reacts chemically with the glass fiber separator, which physically divides the anode and the cathode, causing the battery to short circuit and fail.

The researchers' solution was to design a substrate of interwoven carbon fibers that forms an even stronger chemical bond with aluminum. When the battery is charged, the aluminum is deposited into the carbon structure via covalent bonding, i.e., the sharing of electron pairs between aluminum and carbon atoms.

While electrodes in conventional rechargeable batteries are only two dimensional, this technique uses a three-dimensional -- or nonplanar -- architecture and creates a deeper, more consistent layering of aluminum that can be finely controlled.

The aluminum-anode batteries can be reversibly charged and discharged one or more orders of magnitude more times than other aluminum rechargeable batteries under practical conditions.


Story Source:

Materials provided by Cornell University. Original written by David Nutt. Note: Content may be edited for style and length.


Journal Reference:

  1. Jingxu Zheng, David C. Bock, Tian Tang, Qing Zhao, Jiefu Yin, Killian R. Tallman, Garrett Wheeler, Xiaotun Liu, Yue Deng, Shuo Jin, Amy C. Marschilok, Esther S. Takeuchi, Kenneth J. Takeuchi, Lynden A. Archer. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nature Energy, 2021; DOI: 10.1038/s41560-021-00797-7

Cite This Page:

Cornell University. "New batteries give jolt to renewables, energy storage." ScienceDaily. ScienceDaily, 5 April 2021. .
Cornell University. (2021, April 5). New batteries give jolt to renewables, energy storage. ScienceDaily. Retrieved April 5, 2021 from www.sciencedaily.com/releases/2021/04/210405143400.htm
Cornell University. "New batteries give jolt to renewables, energy storage." ScienceDaily. www.sciencedaily.com/releases/2021/04/210405143400.htm (accessed April 5, 2021).

URL查看原文
来源平台Science Daily
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/321342
专题气候变化
推荐引用方式
GB/T 7714
admin. New Batteries Give Jolt to Renewables, Energy Storage. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。