GSTDTAP  > 气候变化
DOI10.1126/science.abg9901
Gold meets peptides in a hybrid coil
Ki Tae Nam; Hyeohn Kim
2021-03-26
发表期刊Science
出版年2021
英文摘要Chirality can be transferred and coupled at multiple length scales under the condition that the breaking of mirror symmetry is preserved. Biological systems continue to inspire the design and synthesis of new chiral structures, from the smallest biomolecules to whole organisms ([ 1 ][1]). One hypothesis to understand the transfer of molecular chirality turns to the interplay between cytoskeletons and proteins. The chiral interaction between Drosophila myosin and actin cytoskeleton mediates the gliding of actin filaments and determines the handedness of cells, organs, and the organism ([ 2 ][2]). On p. 1368 of this issue, Lu et al. ([ 3 ][3]) harness a peptide assembly to induce the chiral assembly of synthetic gold nanomaterials, substantially enhancing the optical chiral response. The key idea adopted by the authors is to use the helical structures of the human islet amyloid polypeptide (hIAPP). The major biological role of hIAPP is as a hormone that regulates physiological glucose concentrations, but it also induces fiber formation in the brain. The secondary structure of hIAPP forms a β-sheet, which assembles upon stacking into a one-dimensional, long tape-like structure. This tape-like structure is gradually twisted with a regular pitch, owing to the chiral center at the alpha carbon in the peptide. Lu et al. put this platform fully into effect by exploring chiral-selective and molecule-specific interfaces, along with uniform and anisotropic nanorods (see the figure). In this sense, further emphasis can be placed on the coassembly of the amyloid peptides and uniform gold nanorods where the structural ordering of peptides is well transferred to the hybrid structures. Although conjugation of gold nanorods with the already assembled peptides showed a very low asymmetry factor ( g -factor) because of the lack of coupling between individual nanorods, coassembly of uniform gold nanorods and peptides simultaneously induced a high asymmetry factor of 0.1. The authors claimed that the hydrophobic confinement of hIAPP with cetyltrimethyl-ammonium bromide surfactant at the gold surfaces induced peptide folding into a well-defined β-sheet rather than a random coil conformation. Thus, determining the coassembly conditions is necessary to maximize the synergistic coupling in a coiled hybrid of peptide fibers and gold nanorods. Owing to the geometric specificity, the response of circular dichroism, or the differential absorption of left and right circularly polarized light, can be precisely controlled by the gold nanorod size, gap distance between individual nanorods, number of helical turns, and nanohelix pitch length. ![Figure][4] A twisted chain of nanorods Human islet amyloid polypeptides (blue) and gold nanorods (yellow) are cooperatively assembled into a chiral hybrid coil structure. The nanogaps between nanorods twisted along the fibril come from the structural ordering of the peptide sheets. GRAPHIC: N. DESAI/ SCIENCE The asymmetry ( g ) factor of 0.1 is itself as important as previous examples ([ 4 ][5]) of spherical gold nanoparticles on a DNA helix that were closer to a g -factor of 0.01. The well-defined nanosized gap between the two edges of the uniform nanorods that were twisted along the peptide fibril enhanced the chiroptic response. A g -factor higher than 0.1 for a singular gold nanoparticle was achieved by controlling the edges and gaps using chiral peptides ([ 5 ][6]) and micellar organization ([ 6 ][7]). However, the authors' use of multiple gold nanoparticles along with the rotational symmetry of multiple nanogaps in a peptide fibril generated with a precise pitch along the longitudinal direction is a much different demonstration. The collective oscillation of magnetic dipoles through plasmonic resonance becomes rotational, depending on the polarization state of the incident light. The size of the nanorods and the pitch of the assembled structure without being precisely matched will not allow for a high g -factor generation because of the lack of symmetry of the magnetic dipoles. The authors' proposed hybrid coil structure provides a versatile platform for studying exotic phenomena, such as phase-controlled optical devices, hologram films, responsive devices, and nonlinear chiral plasmonic devices ([ 7 ][8]). One strategy in this direction could be the coupling of dielectric materials, such as silica or titanium dioxide (TiO2), because they could lower the optical loss and broaden the applicability scope to even practical optical communication devices, such as flat lenses and displays. Another challenge would be the application of a coassembly strategy by using DNA, polysaccharides, proteins, and viruses as the other chiral inducers. Furthermore, exploring the implications of achiral peptide-mimetic peptoid polymers ([ 8 ][9]), multiple peptides, or other organic molecules would be interesting. The authors also demonstrated a sensory application monitoring the chiroptic response according to amyloid-fiber inhibitor concentrations. The gradual assembly of chiral nanostructures may open up opportunities to modulate the assembly kinetics and pathways, enabling time-dependent structural changes ([ 9 ][10]) even under in vivo conditions. This requires a precise stereochemical design of biomolecules. And dynamic chiroptical modulations could facilitate the realization of practical applications for sensitivity-enhanced detection of cancer markers and genetic mutations, or other reactions with molecular precision in actual cellular environments. 1. [↵][11]1. M. C. Fernandes, 2. J. Aizenberg, 3. J. C. Weaver, 4. K. Bertoldi , Nat. Mater. 20, 237 (2021). [OpenUrl][12] 2. [↵][13]1. G. Lebreton et al ., Science 362, 949 (2018). [OpenUrl][14][Abstract/FREE Full Text][15] 3. [↵][16]1. J. Lu et al ., Science 371, 1368 (2021). [OpenUrl][17][Abstract/FREE Full Text][18] 4. [↵][19]1. A. Kuzyk et al ., Nature 483, 311 (2012). [OpenUrl][20][CrossRef][21][PubMed][22][Web of Science][23] 5. [↵][24]1. H.-E. Lee et al ., Nature 556, 360 (2018). [OpenUrl][25][CrossRef][26][PubMed][27] 6. [↵][28]1. G. González-Rubio et al ., Science 368, 1472 (2020). [OpenUrl][29][Abstract/FREE Full Text][30] 7. [↵][31]1. L. Gui et al ., ACS Photonics 6, 3306 (2019). [OpenUrl][32] 8. [↵][33]1. S.-T. Wang et al ., Proc. Natl. Acad. Sci. U.S.A. 117, 6339 (2020). [OpenUrl][34][Abstract/FREE Full Text][35] 9. [↵][36]1. H.-Y. Ahn et al ., Accounts of Chemical Research 52, 2768 (2019). [OpenUrl][37] Acknowledgments: The authors appreciate the support from the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF-2017M3D1A1039377) [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: pending:yes [5]: #ref-4 [6]: #ref-5 [7]: #ref-6 [8]: #ref-7 [9]: #ref-8 [10]: #ref-9 [11]: #xref-ref-1-1 "View reference 1 in text" [12]: {openurl}?query=rft.jtitle%253DNat.%2BMater.%26rft.volume%253D20%26rft.spage%253D237%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [13]: #xref-ref-2-1 "View reference 2 in text" [14]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLebreton%26rft.auinit1%253DG.%26rft.volume%253D362%26rft.issue%253D6417%26rft.spage%253D949%26rft.epage%253D952%26rft.atitle%253DMolecular%2Bto%2Borganismal%2Bchirality%2Bis%2Binduced%2Bby%2Bthe%2Bconserved%2Bmyosin%2B1D%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aat8642%26rft_id%253Dinfo%253Apmid%252F30467170%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [15]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjIvNjQxNy85NDkiO3M6NDoiYXRvbSI7czoyMzoiL3NjaS8zNzEvNjUzNi8xMzExLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [16]: #xref-ref-3-1 "View reference 3 in text" [17]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLu%26rft.auinit1%253DJ.%26rft.volume%253D371%26rft.issue%253D6536%26rft.spage%253D1368%26rft.epage%253D1374%26rft.atitle%253DEnhanced%2Boptical%2Basymmetry%2Bin%2Bsupramolecular%2Bchiroplasmonic%2Bassemblies%2Bwith%2Blong-range%2Border%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abd8576%26rft_id%253Dinfo%253Apmid%252F33632891%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNzEvNjUzNi8xMzY4IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzcxLzY1MzYvMTMxMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [19]: #xref-ref-4-1 "View reference 4 in text" [20]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DKuzyk%26rft.auinit1%253DA.%26rft.volume%253D483%26rft.issue%253D7389%26rft.spage%253D311%26rft.epage%253D314%26rft.atitle%253DDNA-based%2Bself-assembly%2Bof%2Bchiral%2Bplasmonic%2Bnanostructures%2Bwith%2Btailored%2Boptical%2Bresponse.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature10889%26rft_id%253Dinfo%253Apmid%252F22422265%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/external-ref?access_num=10.1038/nature10889&link_type=DOI [22]: /lookup/external-ref?access_num=22422265&link_type=MED&atom=%2Fsci%2F371%2F6536%2F1311.atom [23]: /lookup/external-ref?access_num=000301481800044&link_type=ISI [24]: #xref-ref-5-1 "View reference 5 in text" [25]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D556%26rft.spage%253D360%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41586-018-0034-1%26rft_id%253Dinfo%253Apmid%252F29670265%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1038/s41586-018-0034-1&link_type=DOI [27]: /lookup/external-ref?access_num=29670265&link_type=MED&atom=%2Fsci%2F371%2F6536%2F1311.atom [28]: #xref-ref-6-1 "View reference 6 in text" [29]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DGonzalez-Rubio%26rft.auinit1%253DG.%26rft.volume%253D368%26rft.issue%253D6498%26rft.spage%253D1472%26rft.epage%253D1477%26rft.atitle%253DMicelle-directed%2Bchiral%2Bseeded%2Bgrowth%2Bon%2Banisotropic%2Bgold%2Bnanocrystals%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aba0980%26rft_id%253Dinfo%253Apmid%252F32587018%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNjgvNjQ5OC8xNDcyIjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzcxLzY1MzYvMTMxMS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [31]: #xref-ref-7-1 "View reference 7 in text" [32]: {openurl}?query=rft.jtitle%253DACS%2BPhotonics%26rft.volume%253D6%26rft.spage%253D3306%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [33]: #xref-ref-8-1 "View reference 8 in text" [34]: {openurl}?query=rft.jtitle%253DProc.%2BNatl.%2BAcad.%2BSci.%2BU.S.A.%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1919749117%26rft_id%253Dinfo%253Apmid%252F32165539%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMToiMTE3LzEyLzYzMzkiO3M6NDoiYXRvbSI7czoyMzoiL3NjaS8zNzEvNjUzNi8xMzExLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [36]: #xref-ref-9-1 "View reference 9 in text" [37]: {openurl}?query=rft.jtitle%253DAccounts%2Bof%2BChemical%2BResearch%26rft.volume%253D52%26rft.spage%253D2768%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/321084
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Ki Tae Nam,Hyeohn Kim. Gold meets peptides in a hybrid coil[J]. Science,2021.
APA Ki Tae Nam,&Hyeohn Kim.(2021).Gold meets peptides in a hybrid coil.Science.
MLA Ki Tae Nam,et al."Gold meets peptides in a hybrid coil".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ki Tae Nam]的文章
[Hyeohn Kim]的文章
百度学术
百度学术中相似的文章
[Ki Tae Nam]的文章
[Hyeohn Kim]的文章
必应学术
必应学术中相似的文章
[Ki Tae Nam]的文章
[Hyeohn Kim]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。