GSTDTAP  > 气候变化
DOI10.1111/gcb.15590
Increasing aridity will not offset CO2 fertilization in fast‐growing eucalypts with access to deep soil water
Daniel Nadal‐; Sala; Belinda E. Medlyn; Nadine K. Ruehr; Craig V. M. Barton; David S. Ellsworth; Carles Gracia; David T. Tissue; Mark G. Tjoelker; Santi Sabaté
2021-03-25
发表期刊Global Change Biology
出版年2021
英文摘要

Rising atmospheric [CO2] (Ca) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to Ca. Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated Ca (eCa) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2‐year whole‐tree chamber experiment with factorial Ca (ambient =380, elevated =620 μmol mol−1) and watering treatments, and a 10‐year stand‐scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both Ca treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry‐down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing Ca up to 700 μmol mol−1 alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising Ca will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non‐nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep‐rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.

领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/320915
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Daniel Nadal‐,Sala,Belinda E. Medlyn,等. Increasing aridity will not offset CO2 fertilization in fast‐growing eucalypts with access to deep soil water[J]. Global Change Biology,2021.
APA Daniel Nadal‐.,Sala.,Belinda E. Medlyn.,Nadine K. Ruehr.,Craig V. M. Barton.,...&Santi Sabaté.(2021).Increasing aridity will not offset CO2 fertilization in fast‐growing eucalypts with access to deep soil water.Global Change Biology.
MLA Daniel Nadal‐,et al."Increasing aridity will not offset CO2 fertilization in fast‐growing eucalypts with access to deep soil water".Global Change Biology (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Daniel Nadal‐]的文章
[Sala]的文章
[Belinda E. Medlyn]的文章
百度学术
百度学术中相似的文章
[Daniel Nadal‐]的文章
[Sala]的文章
[Belinda E. Medlyn]的文章
必应学术
必应学术中相似的文章
[Daniel Nadal‐]的文章
[Sala]的文章
[Belinda E. Medlyn]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。