GSTDTAP  > 气候变化
DOI10.1126/science.abh0424
Tandem catalysis at nanoscale
Chunlei Pei; Jinlong Gong
2021-03-19
发表期刊Science
出版年2021
英文摘要Chemical engineering processes are typically governed by multiple unit operations. To minimize the energy consumption and economic cost, researchers face the challenge of integrating multiple steps of reactions and separations. A tandem reaction involves sequential reactions within one condition, presenting an effective scheme for emerging chemical industries ([ 1 ][1]). On page 1257 of this issue, Yan et al. ([ 2 ][2]) present a tandem catalyst with porous overcoating structures, In2O3-Pt/Al2O3, for coupling catalytic propane dehydrogenation with selective H2 combustion. To control the reaction sequence and selectivity under the coexistence of reactants, intermediates, and products, the design of tandem catalysts plays a crucial role in mediating the multiple reactions under the same condition ([ 3 ][3]). In principle, a tandem catalyst is composed of different types of catalytic sites, and a predetermined sequence of reactions occurs at each corresponding catalytic site. The key to manipulating the process of tandem catalysis is to coordinate the transport of reactive intermediates among catalytic sites ([ 4 ][4], [ 5 ][5]). Random physical mixtures of catalysts cannot effectively mediate the reaction sequence. Therefore, the proximity ([ 6 ][6], [ 7 ][7]) and hierarchy ([ 8 ][8]) of catalytic sites within the tandem catalyst must be carefully constructed to regulate the transport of key intermediates. ![Figure][9] Tandem catalysis with porous overcoating structure Propane dehydrogenation makes propylene, which is an important feedstock for polymers. The porous overcoating structure regulates the transport of hydrogen species and promotes the selective H2 combustion, which consequently drives catalytic propane dehydrogenation forward. The relative location of the alumina-supported platinum and the indium oxide ceramic is important for tandem catalysis. GRAPHIC: V. ALTOUNIAN/ SCIENCE BASED ON C. PEI AND J. GONG The research on the tandem coupling of catalytic propane dehydrogenation to selective H2 combustion bridges the fundamental philosophy to the industrial application. The on-purpose production of propylene directly from propane is a highly desired process to fill the supply-demand gap in the alkene market ([ 9 ][10], [ 10 ][11]). The catalytic propane dehydrogenation process as an endothermic reaction is restricted by the thermodynamic equilibrium, as well as sintering and coking under high temperatures ([ 11 ][12], [ 12 ][13]). Instant removal of H2 through selective combustion could force the catalytic dehydrogenation to move forward and break the thermodynamic limitation of the nonoxidative catalytic reaction ([ 13 ][14]). However, to avoid the combustion of carbon species, the catalytic dehydrogenation and selective H2 combustion must be properly regulated in sequence by the tandem catalyst. Yan et al. report a catalytic system comprising alumina-supported Pt nanoclusters (Pt/Al2O3) for propane dehydrogenation and In2O3 for selective H2 combustion (see the figure). To rationally coordinate sequential reactions, Pt/Al2O3 is overcoated by In2O3 films by using an atomic layer deposition (ALD) process. The coating becomes porous, with the pore size of about 1.4 nm, upon thermal treatment. This leads to the exposure of approximately half of the surface Pt atoms for the access of gaseous molecules. A bonus of this structure is that the porous In2O3 films could prevent the aggregation of Pt particles at high temperatures. The deliberate design of this porous overcoating structure is to enable H atoms generated by propane dehydrogenation on Pt surfaces to rapidly diffuse across the interface and react with O2 on In2O3. Yan et al. simply vary the number of ALD cycles in the range of 2 to 55 to control the film thickness. The In2O3 film with a thickness of ∼2 nm achieves the optimal propane conversion and propylene selectivity. These resuts confirm that the dedicated architecture of the tandem catalyst facilitates the coupled reaction. An appropriate proximity could minimize the oxidization of propylene into CO x and promote the propylene selectivity even at high values of propane conversion. The authors demonstrate that this porous overcoating topology is essential by comparing it with a physical mixture of Pt-based and In2O3-based catalysts and a conventional Pt/In2O3-supported structure. The characterization of H2 temperature-programmed reduction reveals that the partially reduced indium species (In2O3- x ) can only be formed with the porous tandem structure under H2 reduction. The authors argue that the intimate contact between Pt and In2O3 over the tandem catalyst eases the diffusion of hydrogen species from Pt to the Pt-In2O3 interface and subsequently reacting with In2O3. The coordinated transport of H2 bridges the propane dehydrogenation to selective H2 combustion and drives the propylene production forward. The tandem catalyst achieves 75% propylene selectivity at 40% propane conversion and leads to a stable 30% propylene yield at 450°C. The study on reaction kinetics proves that the O2-enhanced dehydrogenation and H2 combustion progress much faster on the tandem structure, further implying more intensive transport of H atoms. The tandem catalyst outperforms state-of-the-art catalysts of oxidative propane dehydrogenation. Further, this performance also exceeds the thermodynamic equilibrium conversion of about 24% for nonoxidative propane dehydrogenation. The tandem coupling at nanoscale performs comparably with or better than macroscale engineering strategies, such as membrane, staged, or chemical looping reactors. The authors' findings should inspire further developments both in academic and industrial areas. The methodology exemplifies the strategy of mediating the transport of key intermediates across various catalytic sites and integrating multiple reactions sequentially. The mechanistic understanding on the diffusion of reactive intermediates between tandem catalytic sites remains challenging, which relies on the advance of time- and spatially resolved spectroscopy and microscopy technologies. Furthermore, the industrial manufacture of tandem catalysts with atomic-level control of overcoating films needs substantial development to provide this revolutionary technology for the olefin industry. 1. [↵][15]1. L. F. Tietze, 2. U. Beifuss , Angew. Chem. Int. Ed. 32, 131 (1993). [OpenUrl][16] 2. [↵][17]1. H. Yan et al ., Science 371, 1257 (2021). [OpenUrl][18][Abstract/FREE Full Text][19] 3. [↵][20]1. Y. Yamada et al ., Nat. Chem. 3, 372 (2011). [OpenUrl][21][CrossRef][22][PubMed][23] 4. [↵][24]1. F. Jiao et al ., Science 351, 1065 (2016). [OpenUrl][25][Abstract/FREE Full Text][26] 5. [↵][27]1. P. Gao et al ., Nat. Chem. 9, 1019 (2017). [OpenUrl][28][CrossRef][29] 6. [↵][30]1. J. Zečević, 2. G. Vanbutsele, 3. K. P. de Jong, 4. J. A. Martens , Nature 528, 245 (2015). [OpenUrl][31][CrossRef][32][PubMed][33] 7. [↵][34]1. Z. Li et al ., Joule 3, 570 (2019). [OpenUrl][35][CrossRef][36] 8. [↵][37]1. J. Bao, 2. J. He, 3. Y. Zhang, 4. Y. Yoneyama, 5. N. Tsubaki , Angew. Chem. Int. Ed. 47, 353 (2008). [OpenUrl][38][PubMed][39] 9. [↵][40]1. J. J. H. B. Sattler, 2. J. Ruiz-Martinez, 3. E. Santillan-Jimenez, 4. B. M. Weckhuysen , Chem. Rev. 114, 10613 (2014). [OpenUrl][41][CrossRef][42][PubMed][43] 10. [↵][44]1. S. Chen et al ., Chem. Soc. Rev. (2021). 10.1039/d0cs00814a 11. [↵][45]1. S. Chen et al ., J. Am. Chem. Soc. 141, 18653 (2019). [OpenUrl][46][CrossRef][47][PubMed][48] 12. [↵][49]1. J. T. Grant et al ., Science 354, 1570 (2016). [OpenUrl][50][Abstract/FREE Full Text][51] 13. [↵][52]1. T. Waku, 2. J. A. Biscardi, 3. E. Iglesia , J. Catal. 222, 481 (2004). [OpenUrl][53] Acknowledgments: The authors are supported by the National Natural Science Foundation of China (U1862207 and 21525626) and the Program of Introducing Talents of Discipline to Universities (BP0618007). [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: pending:yes [10]: #ref-9 [11]: #ref-10 [12]: #ref-11 [13]: #ref-12 [14]: #ref-13 [15]: #xref-ref-1-1 "View reference 1 in text" [16]: {openurl}?query=rft.jtitle%253DAngew.%2BChem.%2BInt.%2BEd.%26rft.volume%253D32%26rft.spage%253D131%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [17]: #xref-ref-2-1 "View reference 2 in text" [18]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DYan%26rft.auinit1%253DH.%26rft.volume%253D371%26rft.issue%253D6535%26rft.spage%253D1257%26rft.epage%253D1260%26rft.atitle%253DTandem%2BIn2O3-Pt%252FAl2O3%2Bcatalyst%2Bfor%2Bcoupling%2Bof%2Bpropane%2Bdehydrogenation%2Bto%2Bselective%2BH2%2Bcombustion%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abd4441%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNzEvNjUzNS8xMjU3IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzcxLzY1MzUvMTIwMy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [20]: #xref-ref-3-1 "View reference 3 in text" [21]: {openurl}?query=rft.stitle%253DNat%2BChem%26rft.aulast%253DYamada%26rft.auinit1%253DY.%26rft.volume%253D3%26rft.issue%253D5%26rft.spage%253D372%26rft.epage%253D376%26rft.atitle%253DNanocrystal%2Bbilayer%2Bfor%2Btandem%2Bcatalysis.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnchem.1018%26rft_id%253Dinfo%253Apmid%252F21505495%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [22]: /lookup/external-ref?access_num=10.1038/nchem.1018&link_type=DOI [23]: /lookup/external-ref?access_num=21505495&link_type=MED&atom=%2Fsci%2F371%2F6535%2F1203.atom [24]: #xref-ref-4-1 "View reference 4 in text" [25]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DJiao%26rft.auinit1%253DF.%26rft.volume%253D351%26rft.issue%253D6277%26rft.spage%253D1065%26rft.epage%253D1068%26rft.atitle%253DSelective%2Bconversion%2Bof%2Bsyngas%2Bto%2Blight%2Bolefins%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaf1835%26rft_id%253Dinfo%253Apmid%252F26941314%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNTEvNjI3Ny8xMDY1IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzcxLzY1MzUvMTIwMy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [27]: #xref-ref-5-1 "View reference 5 in text" [28]: {openurl}?query=rft.jtitle%253DNat.%2BChem.%26rft.volume%253D9%26rft.spage%253D1019%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnchem.2794%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/external-ref?access_num=10.1038/nchem.2794&link_type=DOI [30]: #xref-ref-6-1 "View reference 6 in text" [31]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D528%26rft.spage%253D245%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature16173%26rft_id%253Dinfo%253Apmid%252F26659185%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: /lookup/external-ref?access_num=10.1038/nature16173&link_type=DOI [33]: /lookup/external-ref?access_num=26659185&link_type=MED&atom=%2Fsci%2F371%2F6535%2F1203.atom [34]: #xref-ref-7-1 "View reference 7 in text" [35]: {openurl}?query=rft.jtitle%253DJoule%26rft.volume%253D3%26rft.spage%253D570%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.joule.2018.10.027%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: /lookup/external-ref?access_num=10.1016/j.joule.2018.10.027&link_type=DOI [37]: #xref-ref-8-1 "View reference 8 in text" [38]: {openurl}?query=rft.jtitle%253DAngewandte%2BChemie%2B%2528International%2BEdition%2Bin%2BEnglish%2529.%26rft.stitle%253DAngewandte%2BChemie%2B%2528International%2BEdition%2Bin%2BEnglish%2529.%26rft.aulast%253DBao%26rft.auinit1%253DJ.%26rft.volume%253D47%26rft.issue%253D2%26rft.spage%253D353%26rft.epage%253D356%26rft.atitle%253DA%2Bcore%252Fshell%2Bcatalyst%2Bproduces%2Ba%2Bspatially%2Bconfined%2Beffect%2Band%2Bshape%2Bselectivity%2Bin%2Ba%2Bconsecutive%2Breaction.%26rft_id%253Dinfo%253Apmid%252F18000999%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [39]: /lookup/external-ref?access_num=18000999&link_type=MED&atom=%2Fsci%2F371%2F6535%2F1203.atom [40]: #xref-ref-9-1 "View reference 9 in text" [41]: {openurl}?query=rft.jtitle%253DChem.%2BRev.%26rft.volume%253D114%26rft.spage%253D10613%26rft_id%253Dinfo%253Adoi%252F10.1021%252Fcr5002436%26rft_id%253Dinfo%253Apmid%252F25163050%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [42]: /lookup/external-ref?access_num=10.1021/cr5002436&link_type=DOI [43]: /lookup/external-ref?access_num=25163050&link_type=MED&atom=%2Fsci%2F371%2F6535%2F1203.atom [44]: #xref-ref-10-1 "View reference 10 in text" [45]: #xref-ref-11-1 "View reference 11 in text" [46]: {openurl}?query=rft.jtitle%253DJ.%2BAm.%2BChem.%2BSoc.%26rft.volume%253D141%26rft.spage%253D18653%26rft_id%253Dinfo%253Adoi%252F10.1021%252Fjacs.9b09235%26rft_id%253Dinfo%253Apmid%252F31703164%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [47]: /lookup/external-ref?access_num=10.1021/jacs.9b09235&link_type=DOI [48]: /lookup/external-ref?access_num=31703164&link_type=MED&atom=%2Fsci%2F371%2F6535%2F1203.atom [49]: #xref-ref-12-1 "View reference 12 in text" [50]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaf7885%26rft_id%253Dinfo%253Apmid%252F27934702%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [51]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNTQvNjMxOS8xNTcwIjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzcxLzY1MzUvMTIwMy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [52]: #xref-ref-13-1 "View reference 13 in text" [53]: {openurl}?query=rft.jtitle%253DJ.%2BCatal.%26rft.volume%253D222%26rft.spage%253D481%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/319923
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Chunlei Pei,Jinlong Gong. Tandem catalysis at nanoscale[J]. Science,2021.
APA Chunlei Pei,&Jinlong Gong.(2021).Tandem catalysis at nanoscale.Science.
MLA Chunlei Pei,et al."Tandem catalysis at nanoscale".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chunlei Pei]的文章
[Jinlong Gong]的文章
百度学术
百度学术中相似的文章
[Chunlei Pei]的文章
[Jinlong Gong]的文章
必应学术
必应学术中相似的文章
[Chunlei Pei]的文章
[Jinlong Gong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。