GSTDTAP  > 气候变化
Performance of Methane Conversion Solid Catalyst Is Predicted by Theoretical Calculation
admin
2021-03-04
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)

Japanese researchers have developed a simulation method to theoretically estimate the performance of heterogeneous catalyst by combining first-principles calculation (1) and kinetic calculation techniques. Up to now, simulation studies mainly focused on a single or limited number of reaction pathways, and it was difficult to estimate the efficiency of a catalytic reaction without experimental information.

Atsushi Ishikawa, Senior Researcher, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science (NIMS), performed computation of reaction kinetic information from first-principles calculations based on quantum mechanics, and developed methods and programs to carry out kinetic simulations without using experimental kinetic results. Then he applied the findings to the oxidative coupling of methane (OCM) reaction, which is an important process in the use of natural gas. He could successfully predict the yield of the products, such as ethane, without experimental information on the reaction kinetics. He also predicted changes in yield depending on the temperature and partial pressure, and the results reproduced faithfully the existing experimental results.

This research shows that the computer simulation enables the forecasting the conversion of reactant and the selectivity of products, even if experimental data are unavailable. The search for catalytic materials led by theory and calculation is expected to speed up. Furthermore, this method is highly versatile and can be applied not only to methane conversion catalysts but also to other catalyst systems such as for automobile exhaust gas purification, carbon dioxide reduction and hydrogen generation, and is expected to contribute to the realization of a carbon-free society.

The research was supported by JST's Strategic Basic Research Program, Precursory Research for Embryonic Science and Technology (PRESTO) Program.

(1) First-principles calculation A theoretical calculation method for solving quantum mechanical equations without using empirical parameters, which is often applied to atomic, molecular, solid, and interface systems.


Story Source:

Materials provided by Japan Science and Technology Agency. Note: Content may be edited for style and length.


Journal Reference:

  1. Atsushi Ishikawa, Yoshitaka Tateyama. A First-Principles Microkinetics for Homogeneous–Heterogeneous Reactions: Application to Oxidative Coupling of Methane Catalyzed by Magnesium Oxide. ACS Catalysis, 2021; 2691 DOI: 10.1021/acscatal.0c04104

Cite This Page:

Japan Science and Technology Agency. "Performance of methane conversion solid catalyst is predicted by theoretical calculation: Accelerating search for various materials to achieve a carbon-free society." ScienceDaily. ScienceDaily, 4 March 2021. .
Japan Science and Technology Agency. (2021, March 4). Performance of methane conversion solid catalyst is predicted by theoretical calculation: Accelerating search for various materials to achieve a carbon-free society. ScienceDaily. Retrieved March 4, 2021 from www.sciencedaily.com/releases/2021/03/210304100432.htm
Japan Science and Technology Agency. "Performance of methane conversion solid catalyst is predicted by theoretical calculation: Accelerating search for various materials to achieve a carbon-free society." ScienceDaily. www.sciencedaily.com/releases/2021/03/210304100432.htm (accessed March 4, 2021).

URL查看原文
来源平台Science Daily
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/317322
专题气候变化
推荐引用方式
GB/T 7714
admin. Performance of Methane Conversion Solid Catalyst Is Predicted by Theoretical Calculation. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。