GSTDTAP  > 资源环境科学
DOI10.1073/pnas.2008987118
Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks
Robert P. Skelton; Leander D. L. Anderegg; Jessica Diaz; Matthew M. Kling; Prahlad Papper; Laurent J. Lamarque; Sylvain Delzon; Todd E. Dawson; David D. Ackerly
2021-03-09
发表期刊Proceedings of the National Academy of Sciences
出版年2021
英文摘要

Quantitative knowledge of xylem physical tolerance limits to dehydration is essential to understanding plant drought tolerance but is lacking in many long-vessel angiosperms. We examine the hypothesis that a fundamental association between sustained xylem water transport and downstream tissue function should select for xylem that avoids embolism in long-vessel trees by quantifying xylem capacity to withstand air entry of western North American oaks (Quercus spp.). Optical visualization showed that 50% of embolism occurs at water potentials below −2.7 MPa in all 19 species, and −6.6 MPa in the most resistant species. By mapping the evolution of xylem vulnerability to embolism onto a fossil-dated phylogeny of the western North American oaks, we found large differences between clades (sections) while closely related species within each clade vary little in their capacity to withstand air entry. Phylogenetic conservatism in xylem physical tolerance, together with a significant correlation between species distributions along rainfall gradients and their dehydration tolerance, suggests that closely related species occupy similar climatic niches and that species' geographic ranges may have shifted along aridity gradients in accordance with their physical tolerance. Such trends, coupled with evolutionary associations between capacity to withstand xylem embolism and other hydraulic-related traits, yield wide margins of safety against embolism in oaks from diverse habitats. Evolved responses of the vascular system to aridity support the embolism avoidance hypothesis and reveal the importance of quantifying plant capacity to withstand xylem embolism for understanding function and biogeography of some of the Northern Hemisphere’s most ecologically and economically important plants.

领域资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/316966
专题资源环境科学
推荐引用方式
GB/T 7714
Robert P. Skelton,Leander D. L. Anderegg,Jessica Diaz,et al. Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks[J]. Proceedings of the National Academy of Sciences,2021.
APA Robert P. Skelton.,Leander D. L. Anderegg.,Jessica Diaz.,Matthew M. Kling.,Prahlad Papper.,...&David D. Ackerly.(2021).Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks.Proceedings of the National Academy of Sciences.
MLA Robert P. Skelton,et al."Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks".Proceedings of the National Academy of Sciences (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Robert P. Skelton]的文章
[Leander D. L. Anderegg]的文章
[Jessica Diaz]的文章
百度学术
百度学术中相似的文章
[Robert P. Skelton]的文章
[Leander D. L. Anderegg]的文章
[Jessica Diaz]的文章
必应学术
必应学术中相似的文章
[Robert P. Skelton]的文章
[Leander D. L. Anderegg]的文章
[Jessica Diaz]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。