GSTDTAP  > 气候变化
Tundra vegetation shows similar patterns along microclimates from Arctic to sub-Antarctic
admin
2021-03-01
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)
IMAGE

IMAGE: The researchers collected data across four distinct tundra regions. view more 

Credit: Photos: Julia Kemppinen and Peter C. le Roux.

Researchers are in the search for generalisable rules and patterns in nature. Biogeographer Julia Kemppinen together with her colleagues tested if plant functional traits show similar patterns along microclimatic gradients across far-apart regions from the high-Arctic Svalbard to the sub-Antarctic Marion Island. Kemppinen and her colleagues found surprisingly identical patterns.

It is widely known that global vegetation patterns and plant properties follow major differences in climate. Yet, it has remained a mystery how well the same rules can be applied at very local scales. Are responses to the environment similar in plant communities along local temperature gradients in Svalbard, Greenland, Fennoscandia, and Marion island? The results published in Nature Ecology & Evolution indicate that these generalisable patterns do exist.

The researchers collected field data on 217 species from nearly 7000 study plots. The results revealed strong, consistent plant functional trait-environment relationships across the four tundra ecosystems.

"This is important because plant functional traits inform us how plants use resources, such as soil moisture, and how plants shape their environments such as carbon cycling. In addition, traits investigations can also give a hint on how plants may react to the ongoing climate change", says Post doctoral researcher Julia Kemppinen from the University of Oulu.

The researchers found patterns that hold despite unique species pools and other site-specific characteristics. This information improves the biological basis for climate change impact predictions for vulnerable tundra ecosystems.

At coarse spatial scales, there are clear global climatic patterns in temperature and precipitation. For instance, the high-Arctic Svalbard is generally much colder than sub-Arctic Fennoscandia. However, ground-dwelling plants experience local climate conditions, the microclimate, which plays an important role in how ecosystems are responding to climate change.

"It is fascinating to find very distinct differences in soil moisture and soil temperatures at a local scale. If you look close enough, the warmest micro spots in Svalbard have higher temperatures than the coldest spots in Fennoscandia. These local hydrological and thermal conditions clearly affect plants and their functional traits", says Post doctoral researcher Pekka Niittynen from the University of Helsinki.

The results indicate that the tundra plant communities respond similarly to microclimate. This helps generalising scientific results from one tundra region to another without making too bold conclusions.

Investigating the connections between plant functional traits and the environment requires a lot of data. The researchers combined their field data with over 76000 database trait records provided by the Botanical Information and Ecological Network, TRY Plant Trait Database and the Tundra Trait Team.

"Our research groups at the BioGeoClimate Modelling Lab at the University of Helsinki and the le Roux lab at the University of Pretoria collected a lot of data in the field, but we couldn't have done this study without high-quality, open data from global databases", says professor Miska Luoto from the University of Helsinki.

The study is a part of Kemppinen's PhD thesis Soil moisture and its importance for tundra plants at the University of Helsinki, Helsinki, Finland.

###

The study and data are openly available

Julia Kemppinen, Pekka Niittynen, Peter C. le Roux, Mia Momberg, Konsta Happonen, Juha Aalto, Helena Rautakoski, Brian J. Enquist, Vigdis Vandvik, Aud H. Halbritter, Brian Maitner & Miska Luoto (2021). Consistent trait-environment relationships within and across tundra plant communities. Nature Ecology & Evolution. https://dx.doi.org/10.1038/s41559-021-01396-1

Julia Kemppinen, Pekka Niittynen, Peter C. le Roux, Mia Momberg, Konsta Happonen, Juha Aalto, Helena Rautakoski, Brian J. Enquist, Vigdis Vandvik, Aud H. Halbritter, Brian Maitner & Miska Luoto (2021). Data from: Consistent trait-environment relationships within and across tundra plant communities. Zenodo. https://doi.org/10.5281/zenodo.4362216

Contact information

Post doctoral researcher Julia Kemppinen
Email: julia.kemppinen@oulu.fi
Twitter: @juliakemppinen

Post doctoral researcher Pekka Niittynen
Email: pekka.niittynen@helsinki.fi
Twitter: @PONiittynen

Professor Miska Luoto
Email: miska.luoto@helsinki.fi

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/316168
专题气候变化
推荐引用方式
GB/T 7714
admin. Tundra vegetation shows similar patterns along microclimates from Arctic to sub-Antarctic. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。