GSTDTAP  > 地球科学
DOI10.1073/pnas.2011585118
Climate control on terrestrial biospheric carbon turnover
Timothy I. Eglinton; Valier V. Galy; Jordon D. Hemingway; Xiaojuan Feng; Hongyan Bao; Thomas M. Blattmann; Angela F. Dickens; Hannah Gies; Liviu Giosan; Negar Haghipour; Pengfei Hou; Maarten Lupker; Cameron P. McIntyre; Daniel B. Montluçon; Bernhard Peucker-Ehrenbrink; Camilo Ponton; Enno Schefuß; Melissa S. Schwab; Britta M. Voss; Lukas Wacker; Ying Wu; Meixun Zhao
2021-02-23
发表期刊Proceedings of the National Academy of Science
出版年2021
英文摘要

Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/315655
专题地球科学
推荐引用方式
GB/T 7714
Timothy I. Eglinton,Valier V. Galy,Jordon D. Hemingway,et al. Climate control on terrestrial biospheric carbon turnover[J]. Proceedings of the National Academy of Science,2021.
APA Timothy I. Eglinton.,Valier V. Galy.,Jordon D. Hemingway.,Xiaojuan Feng.,Hongyan Bao.,...&Meixun Zhao.(2021).Climate control on terrestrial biospheric carbon turnover.Proceedings of the National Academy of Science.
MLA Timothy I. Eglinton,et al."Climate control on terrestrial biospheric carbon turnover".Proceedings of the National Academy of Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Timothy I. Eglinton]的文章
[Valier V. Galy]的文章
[Jordon D. Hemingway]的文章
百度学术
百度学术中相似的文章
[Timothy I. Eglinton]的文章
[Valier V. Galy]的文章
[Jordon D. Hemingway]的文章
必应学术
必应学术中相似的文章
[Timothy I. Eglinton]的文章
[Valier V. Galy]的文章
[Jordon D. Hemingway]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。