GSTDTAP  > 地球科学
Fuel for earliest life forms: Organic molecules found in 3.5 billion-year-old rocks
admin
2021-02-18
发布年2021
语种英语
国家美国
领域地球科学 ; 气候变化
正文(英文)
IMAGE

IMAGE: 3.5 billion-year-old barite (bottom) with fossilized microbial mat (top). This barite is part of the Dresser Formation in NW Australia. view more 

Credit: Helge Missbach

A research team including the geobiologist Dr. Helge Missbach from the University of Cologne has detected organic molecules and gases trapped in 3.5 billion-year-old rocks. A widely accepted hypothesis says that the earliest life forms used small organic molecules as building materials and energy sources. However, the existence of such components in early habitats on Earth was as yet unproven. The current study, published in the journal 'Nature Communications', now shows that solutions from archaic hydrothermal vents contained essential components that formed a basis for the earliest life on our planet.

Specifically, the scientists examined about 3.5 billion-year-old barites from the Dresser Formation in Western Australia. The barite thus dates from a time when early life developed on Earth. 'In the field, the barites are directly associated with fossilized microbial mats, and they smell like rotten eggs when freshly scratched. Thus, we suspected that they contained organic material that might have served as nutrients for early microbial life,' said Dr. Helge Missbach of the Institute of Geology and Mineralogy and lead author of the study.

In the fluid inclusions, the team identified organic compounds such as acetic acid and methanethiol, in addition to gases such as carbon dioxide and hydrogen sulfide. These compounds may have been important substrates for metabolic processes of early microbial life. Furthermore, they are discussed as putative key agents in the origin of life on Earth. 'The immediate connection between primordial molecules emerging from the subsurface and the microbial organisms - 3.5 billion years ago - somehow surprised us. This finding contributes decisively to our understanding of the still unclear earliest evolutionary history of life on Earth,' Missbach concluded.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/315364
专题地球科学
气候变化
推荐引用方式
GB/T 7714
admin. Fuel for earliest life forms: Organic molecules found in 3.5 billion-year-old rocks. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。