GSTDTAP  > 气候变化
DOI10.1126/science.abf4063
Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection
Jennifer M. Dan; Jose Mateus; Yu Kato; Kathryn M. Hastie; Esther Dawen Yu; Caterina E. Faliti; Alba Grifoni; Sydney I. Ramirez; Sonya Haupt; April Frazier; Catherine Nakao; Vamseedhar Rayaprolu; Stephen A. Rawlings; Bjoern Peters; Florian Krammer; Viviana Simon; Erica Ollmann Saphire; Davey M. Smith; Daniela Weiskopf; Alessandro Sette; Shane Crotty
2021-02-05
发表期刊Science
出版年2021
英文摘要Immune memory against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helps to determine protection against reinfection, disease risk, and vaccine efficacy. Using 188 human cases across the range of severity of COVID-19, Dan et al. analyzed cross-sectional data describing the dynamics of SARS-CoV-2 memory B cells, CD8+ T cells, and CD4+ T cells for more than 6 months after infection. The authors found a high degree of heterogeneity in the magnitude of adaptive immune responses that persisted into the immune memory phase to the virus. However, immune memory in three immunological compartments remained measurable in greater than 90% of subjects for more than 5 months after infection. Despite the heterogeneity of immune responses, these results show that durable immunity against secondary COVID-19 disease is a possibility for most individuals. Science , this issue p. [eabf4063][1] ### INTRODUCTION Immunological memory is the basis for durable protective immunity after infections or vaccinations. Duration of immunological memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and COVID-19 is unclear. Immunological memory can consist of memory B cells, antibodies, memory CD4+ T cells, and/or memory CD8+ T cells. Knowledge of the kinetics and interrelationships among those four types of memory in humans is limited. Understanding immune memory to SARS-CoV-2 has implications for understanding protective immunity against COVID-19 and assessing the likely future course of the COVID-19 pandemic. ### RATIONALE Assessing virus-specific immune memory over at least a 6-month period is likely necessary to ascertain the durability of immune memory to SARS-CoV-2. Given the evidence that antibodies, CD4+ T cells, and CD8+ T cells can all participate in protective immunity to SARS-CoV-2, we measured antigen-specific antibodies, memory B cells, CD4+ T cells, and CD8+ T cells in the blood from subjects who recovered from COVID-19, up to 8 months after infection. ### RESULTS The study involved 254 samples from 188 COVID-19 cases, including 43 samples at 6 to 8 months after infection. Fifty-one subjects in the study provided longitudinal blood samples, allowing for both cross-sectional and longitudinal analyses of SARS-CoV-2–specific immune memory. Antibodies against SARS-CoV-2 spike and receptor binding domain (RBD) declined moderately over 8 months, comparable to several other reports. Memory B cells against SARS-CoV-2 spike actually increased between 1 month and 8 months after infection. Memory CD8+ T cells and memory CD4+ T cells declined with an initial half-life of 3 to 5 months. This is the largest antigen-specific study to date of the four major types of immune memory for any viral infection. Among the antibody responses, spike immunoglobulin G (IgG), RBD IgG, and neutralizing antibody titers exhibited similar kinetics. Spike IgA was still present in the large majority of subjects at 6 to 8 months after infection. Among the memory B cell responses, IgG was the dominant isotype, with a minor population of IgA memory B cells. IgM memory B cells appeared to be short-lived. CD8+ T cell and CD4+ T cell memory was measured for all SARS-CoV-2 proteins. Although ~70% of individuals possessed detectable CD8+ T cell memory at 1 month after infection, that proportion declined to ~50% by 6 to 8 months after infection. For CD4+ T cell memory, 93% of subjects had detectable SARS-CoV-2 memory at 1 month after infection, and the proportion of subjects positive for CD4+ T cells (92%) remained high at 6 to 8 months after infection. SARS-CoV-2 spike-specific memory CD4+ T cells with the specialized capacity to help B cells [T follicular helper (TFH) cells] were also maintained. The different types of immune memory each had distinct kinetics, resulting in complex interrelationships between the abundance of T cell, B cell, and antibody immune memory over time. Additionally, substantially heterogeneity in memory to SARS-CoV-2 was observed. ### CONCLUSION Substantial immune memory is generated after COVID-19, involving all four major types of immune memory. About 95% of subjects retained immune memory at ~6 months after infection. Circulating antibody titers were not predictive of T cell memory. Thus, simple serological tests for SARS-CoV-2 antibodies do not reflect the richness and durability of immune memory to SARS-CoV-2. This work expands our understanding of immune memory in humans. These results have implications for protective immunity against SARS-CoV-2 and recurrent COVID-19. ![Figure][2] Immunological memory consists of antibodies, memory B cells, memory CD8+ T cells, and memory CD4+ T cells. This study examined all of the types of virus-specific immune memory against SARS-CoV-2 in COVID-19 subjects. Robust immune memory was observed in most individuals. Understanding immune memory to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for improving diagnostics and vaccines and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥6 months after infection. Immunoglobulin G (IgG) to the spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month after symptom onset. SARS-CoV-2–specific CD4+ T cells and CD8+ T cells declined with a half-life of 3 to 5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics. [1]: /lookup/doi/10.1126/science.abf4063 [2]: pending:yes
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/314042
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Jennifer M. Dan,Jose Mateus,Yu Kato,et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection[J]. Science,2021.
APA Jennifer M. Dan.,Jose Mateus.,Yu Kato.,Kathryn M. Hastie.,Esther Dawen Yu.,...&Shane Crotty.(2021).Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection.Science.
MLA Jennifer M. Dan,et al."Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jennifer M. Dan]的文章
[Jose Mateus]的文章
[Yu Kato]的文章
百度学术
百度学术中相似的文章
[Jennifer M. Dan]的文章
[Jose Mateus]的文章
[Yu Kato]的文章
必应学术
必应学术中相似的文章
[Jennifer M. Dan]的文章
[Jose Mateus]的文章
[Yu Kato]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。