GSTDTAP  > 气候变化
DOI10.1126/science.abg3651
Increased tropical cyclone risk to coasts
Suzana J. Camargo; Allison A. Wing
2021-01-29
发表期刊Science
出版年2021
英文摘要The record-breaking 2020 North Atlantic hurricane season has brought new attention to tropical cyclone (TC) risk. Although the astounding total of 30 named storms is not necessarily a signature of climate change, anthropogenic climate change is increasing the threat posed by TCs in other ways. The most confidently predictable changes in TC activity with warming are an increase in the occurrence and intensity of the most intense TCs, an increase in the precipitation associated with TCs, and an increase in storm-surge flooding due to sea level rise ([ 1 ][1]). On top of these changes, on page 514 of this issue, Wang and Toumi ([ 2 ][2]) provide evidence that TC activity close to land is increasing, with a substantial increase in TC risk to coastal regions. TC risk requires a TC to occur, but projections of the number of TCs attributable to warming are uncertain. Because there is no accepted theory for the global number of TCs, projections are based only on modeling studies, which can be sensitive to the type of model used, model convective parameterizations, and the underlying patterns of the projected sea surface temperature forcing of the atmospheric model simulations. Indeed, whereas most models project a decrease in the global number of TCs ([ 1 ][1]), some models instead project an increase in the global TC frequency ([ 3 ][3]–[ 5 ][4]). However, global or even basin-wide TC frequency does not directly drive societal TC risk; landfall does. The 2020 season was also exceptional in this regard: Twelve named storms (six hurricanes) made landfall in the continental United States (see the figure), with devastating social and economic impacts, especially in the central Gulf Coast. Furthermore, in Central America, Eta and Iota dropped huge amounts of rainfall in the same area of Honduras and Nicaragua only 2 weeks apart. Was this a fluke, or is it a worrisome harbinger of future hurricane seasons? Wang and Toumi analyzed TC activity close to land regions and found that TCs are reaching their lifetime maximum intensity (LMI) closer to land. The distance between the location of LMI and land has decreased by 30 km per decade. More TCs are occurring close to land by about two TCs per decade. The locations at which TCs reach their LMI are intrinsically linked to their tracks. Many studies have analyzed possible changes in TC tracks, but these changes are not robust across models and projections ([ 6 ][5]). The observed poleward shift of LMI ([ 7 ][6]) is one of the best-known TC location shifts and is thought to be associated with Hadley cell expansion due to anthropogenic climate change. This shift is most notable in the western North Pacific, is also present in the genesis location ([ 8 ][7]), and is expected to continue ([ 9 ][8]). In contrast, Wang and Toumi noted shifts in the east-west direction that are linked to westward shifts in the steering flow. Both types of shifts could lead to enhanced landfall impacts. ![Figure][9] A busy year for U.S. hurricane landfalls Tracks of 12 tropical storms and hurricanes that made landfall in the continental United States in 2020 are shown. The colors represent the intensity of the storms: tropical depression (TD, light blue); tropical storm (TS, blue); hurricane categories 1 and 2 (Hur 1–2, pink); and hurricane categories 3 to 5 (Hur 3–5, red). GRAPHIC: KELLIE HOLOSKI/ SCIENCE ; (OPERATIONAL PRELIMINARY DATA) THE NATIONAL HURRICANE CENTER DOWNLOADED FROM IBTRACS In the case of the poleward shift, more intense storms could potentially reach and have an impact on unprepared regions typically not affected by intense TCs. Similarly, coastal communities could be affected by TC hazards (winds, precipitation, and storm surge) more often by the westward shift coupled with anthropogenic-driven increases in TC intensity. The impacts of landfalling TCs could potentially become even worse with warming. Li and Chakraborty ([ 10 ][10]) proposed that landfalling TCs take longer to weaken and dissipate over land as the planet warms. Murakami et al. ([ 11 ][11]) showed changes in the global spatial distribution of TCs that were attributed to increasing concentrations of greenhouse gases. It remains unknown whether and how these spatial changes in TC activity are related or whether they are independent, as well as which trends are expected to continue. Wang and Toumi also found that the fraction of time that TCs spend near the coast has been increasing. This could be related to independent observations of a global slowdown of the TC translation speed ([ 12 ][12]) and increased stalling of Atlantic TCs ([ 13 ][13]). Slow-moving hurricanes that spend more time near the coast can lead to large flooding events due to the high amount of precipitation that can fall in one area—as occurred, for example, during Hurricane Harvey (2017) in Houston, Texas, and Hurricane Florence (2018) in the Carolinas. Changes in TC activity can be difficult to characterize because of the inherent observational limitations and the small magnitude of the changes in comparison to natural variability. Wang and Toumi associated trends with changes in steering flow and ambient vertical wind shear, but they do not discuss reasons for these changes. However, other circulation changes have been outlined. For instance, Kossin ([ 14 ][14]) noticed decadal variability in vertical wind shear along the U.S. Atlantic coast that was associated with a drought of major hurricane landfalls in the United States. However, the protective barrier of wind shear along the Atlantic coast is expected to be eroded in the future as a consequence of increased greenhouse gas concentrations ([ 15 ][15]). These changes in circulation (i.e., steering flow, vertical shear, and the Hadley cell) are fundamental to determining TC tracks, and thus the locations that will be affected by TCs. A better understanding of future TC risk, and of regional risk assessment in particular, requires a better understanding of spatial changes in TC activity. This requires further research into the causes, projections, and robustness of circulation changes associated with TC occurrence. Nonetheless, all of the discussed changes in TC activity, combined with a continued buildup of coastal population and infrastructure, paint a picture of a future in which coastal cities will be more prone to the occurrence of TC-related disasters. Although continued investigation is important, we already possess an understanding that argues for increased investment in the preparedness of coastal populations in the path of TCs. 1. [↵][16]1. T. Knutson et al ., Bull. Am. Meteorol. Soc. 101, E303 (2020). [OpenUrl][17] 2. [↵][18]1. S. Wang, 2. R. Toumi , Science 371, 514 (2021). [OpenUrl][19][Abstract/FREE Full Text][20] 3. [↵][21]1. K. Bhatia, 2. G. Vecchi, 3. H. Murakami, 4. S. Underwood, 5. J. Kossin , J. Clim. 31, 8281 (2018). [OpenUrl][22] 4. 1. C.-Y. Lee, 2. S. J. Camargo, 3. A. H. Sobel, 4. M. K. Tippett , J. Clim. 33, 4815 (2020). [OpenUrl][23] 5. [↵][24]1. K. Emanuel , J. Clim. 34, 57 (2021). [OpenUrl][25] 6. [↵][26]1. J. Nakamura et al ., J. Geophys. Res. 122, 9721 (2017). [OpenUrl][27] 7. [↵][28]1. J. P. Kossin, 2. K. A. Emanuel, 3. G. A. Vecchi , Nature 509, 349 (2014). [OpenUrl][29][CrossRef][30][PubMed][31] 8. [↵][32]1. A. S. Daloz, 2. S. J. Camargo , Clim. Dyn. 50, 705 (2018). [OpenUrl][33][CrossRef][34] 9. [↵][35]1. J. P. Kossin, 2. K. A. Emanuel, 3. S. J. Camargo , J. Clim. 29, 5725 (2016). [OpenUrl][36][CrossRef][37] 10. [↵][38]1. L. Li, 2. P. Chakraborty , Nature 587, 230 (2020). [OpenUrl][39] 11. [↵][40]1. H. Murakami et al ., Proc. Natl. Acad. Sci. U.S.A. 117, 10706 (2020). [OpenUrl][41][Abstract/FREE Full Text][42] 12. [↵][43]1. J. P. Kossin , Nature 558, 104 (2018). [OpenUrl][44][CrossRef][45][PubMed][46] 13. [↵][47]1. T. M. Hall, 2. J. P. Kossin , npj Clim. Atmos. Sci. 2, 17 (2019). [OpenUrl][48] 14. [↵][49]1. J. P. Kossin , Nature 541, 390 (2017). [OpenUrl][50][CrossRef][51][PubMed][52] 15. [↵][53]1. M. Ting, 2. J. P. Kossin, 3. S. J. Camargo, 4. C. Li , Sci. Rep. 9, 7795 (2019). [OpenUrl][54][CrossRef][55][PubMed][56] Acknowledgments: S.J.C. thanks the Vetlesen Foundation for its generous and sustained support of climate science at the Lamont-Doherty Earth Observatory of Columbia University. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-5 [5]: #ref-6 [6]: #ref-7 [7]: #ref-8 [8]: #ref-9 [9]: pending:yes [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: #ref-13 [14]: #ref-14 [15]: #ref-15 [16]: #xref-ref-1-1 "View reference 1 in text" [17]: {openurl}?query=rft.jtitle%253DBull.%2BAm.%2BMeteorol.%2BSoc.%26rft.volume%253D101%26rft.spage%253DE303%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: #xref-ref-2-1 "View reference 2 in text" [19]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DWang%26rft.auinit1%253DS.%26rft.volume%253D371%26rft.issue%253D6528%26rft.spage%253D514%26rft.epage%253D517%26rft.atitle%253DRecent%2Bmigration%2Bof%2Btropical%2Bcyclones%2Btoward%2Bcoasts%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abb9038%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzEvNjUyOC81MTQiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzEvNjUyOC80NTguYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [21]: #xref-ref-3-1 "View reference 3 in text" [22]: {openurl}?query=rft.jtitle%253DJ.%2BClim.%26rft.volume%253D31%26rft.spage%253D8281%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: {openurl}?query=rft.jtitle%253DJ.%2BClim.%26rft.volume%253D33%26rft.spage%253D4815%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: #xref-ref-5-1 "View reference 5 in text" [25]: {openurl}?query=rft.jtitle%253DJ.%2BClim.%26rft.volume%253D34%26rft.spage%253D57%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: #xref-ref-6-1 "View reference 6 in text" [27]: {openurl}?query=rft.jtitle%253DJ.%2BGeophys.%2BRes.%26rft.volume%253D122%26rft.spage%253D9721%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [28]: #xref-ref-7-1 "View reference 7 in text" [29]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D509%26rft.spage%253D349%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature13278%26rft_id%253Dinfo%253Apmid%252F24828193%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: /lookup/external-ref?access_num=10.1038/nature13278&link_type=DOI [31]: /lookup/external-ref?access_num=24828193&link_type=MED&atom=%2Fsci%2F371%2F6528%2F458.atom [32]: #xref-ref-8-1 "View reference 8 in text" [33]: {openurl}?query=rft.jtitle%253DClim.%2BDyn.%26rft.volume%253D50%26rft.spage%253D705%26rft_id%253Dinfo%253Adoi%252F10.1007%252Fs00382-017-3636-7%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [34]: /lookup/external-ref?access_num=10.1007/s00382-017-3636-7&link_type=DOI [35]: #xref-ref-9-1 "View reference 9 in text" [36]: {openurl}?query=rft.jtitle%253DJ.%2BClim.%26rft.volume%253D29%26rft.spage%253D5725%26rft_id%253Dinfo%253Adoi%252F10.1175%252FJCLI-D-16-0076.1%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [37]: /lookup/external-ref?access_num=10.1175/JCLI-D-16-0076.1&link_type=DOI [38]: #xref-ref-10-1 "View reference 10 in text" [39]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D587%26rft.spage%253D230%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: #xref-ref-11-1 "View reference 11 in text" [41]: {openurl}?query=rft.jtitle%253DProc.%2BNatl.%2BAcad.%2BSci.%2BU.S.A.%26rft_id%253Dinfo%253Adoi%252F10.1073%252Fpnas.1922500117%26rft_id%253Dinfo%253Apmid%252F32366651%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [42]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoicG5hcyI7czo1OiJyZXNpZCI7czoxMjoiMTE3LzIwLzEwNzA2IjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcxLzY1MjgvNDU4LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [43]: #xref-ref-12-1 "View reference 12 in text" [44]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D558%26rft.spage%253D104%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41586-018-0158-3%26rft_id%253Dinfo%253Apmid%252F29875485%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [45]: /lookup/external-ref?access_num=10.1038/s41586-018-0158-3&link_type=DOI [46]: /lookup/external-ref?access_num=29875485&link_type=MED&atom=%2Fsci%2F371%2F6528%2F458.atom [47]: #xref-ref-13-1 "View reference 13 in text" [48]: {openurl}?query=rft.jtitle%253Dnpj%2BClim.%2BAtmos.%2BSci.%26rft.volume%253D2%26rft.spage%253D17%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [49]: #xref-ref-14-1 "View reference 14 in text" [50]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D541%26rft.spage%253D390%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature20783%26rft_id%253Dinfo%253Apmid%252F28052058%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [51]: /lookup/external-ref?access_num=10.1038/nature20783&link_type=DOI [52]: /lookup/external-ref?access_num=28052058&link_type=MED&atom=%2Fsci%2F371%2F6528%2F458.atom [53]: #xref-ref-15-1 "View reference 15 in text" [54]: {openurl}?query=rft.jtitle%253DSci.%2BRep.%26rft.volume%253D9%26rft.spage%253D7795%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41598-019-44252-w%26rft_id%253Dinfo%253Apmid%252F31127128%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [55]: /lookup/external-ref?access_num=10.1038/s41598-019-44252-w&link_type=DOI [56]: /lookup/external-ref?access_num=31127128&link_type=MED&atom=%2Fsci%2F371%2F6528%2F458.atom
领域气候变化 ; 资源环境
URL查看原文
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/313999
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Suzana J. Camargo,Allison A. Wing. Increased tropical cyclone risk to coasts[J]. Science,2021.
APA Suzana J. Camargo,&Allison A. Wing.(2021).Increased tropical cyclone risk to coasts.Science.
MLA Suzana J. Camargo,et al."Increased tropical cyclone risk to coasts".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Suzana J. Camargo]的文章
[Allison A. Wing]的文章
百度学术
百度学术中相似的文章
[Suzana J. Camargo]的文章
[Allison A. Wing]的文章
必应学术
必应学术中相似的文章
[Suzana J. Camargo]的文章
[Allison A. Wing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。