Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1111/gcb.15501 |
Risk of short‐term biodiversity loss under more persistent precipitation regimes | |
Simon Reynaert; Hans J. De Boeck; Erik Verbruggen; Maya Verlinden; Nina Flowers; Ivan Nijs | |
2021-01-27 | |
发表期刊 | Global Change Biology
![]() |
出版年 | 2021 |
英文摘要 | Recent findings indicate that atmospheric warming increases the persistence of weather patterns in the mid‐latitudes, resulting in sequences of longer dry and wet periods compared to historic averages. The alternation of progressively longer dry and wet extremes could increasingly select for species with a broad environmental tolerance. As a consequence, biodiversity may decline. Here we explore the relationship between the persistence of summer precipitation regimes and plant diversity by subjecting experimental grassland mesocosms to a gradient of dry–wet alternation frequencies whilst keeping the total precipitation constant. The gradient varied the duration of consecutive wet and dry periods, from 1 up to 60 days with or without precipitation, over a total of 120 days. An alternation of longer dry and wet spells led to a severe loss of species richness (up to –75% relative to the current rainfall pattern in W‐Europe) and functional diversity (enhanced dominance of grasses relative to nitrogen (N)‐fixers and non‐N‐fixing forbs). Loss of N‐fixers and non‐N‐fixing forbs in severe treatments was linked to lower baseline competitive success and higher physiological sensitivity to changes in soil moisture compared to grasses. The extent of diversity losses also strongly depended on the timing of the dry and wet periods. Regimes in which long droughts (≥20 days) coincided with above‐average temperatures showed significantly more physiological plant stress over the experimental period, greater plant mortality, and impoverished communities by the end of the season. Across all regimes, the duration of the longest period below permanent wilting point was an accurate predictor of mortality across the communities, indicating that increasingly persistent precipitation regimes may reduce opportunities for drought stress alleviation. We conclude that without recruitment, which was precluded in this experiment, summer precipitation regimes with longer dry and wet spells will likely diminish plant diversity, at least in the short term. |
领域 | 气候变化 ; 资源环境 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/313717 |
专题 | 气候变化 资源环境科学 |
推荐引用方式 GB/T 7714 | Simon Reynaert,Hans J. De Boeck,Erik Verbruggen,等. Risk of short‐term biodiversity loss under more persistent precipitation regimes[J]. Global Change Biology,2021. |
APA | Simon Reynaert,Hans J. De Boeck,Erik Verbruggen,Maya Verlinden,Nina Flowers,&Ivan Nijs.(2021).Risk of short‐term biodiversity loss under more persistent precipitation regimes.Global Change Biology. |
MLA | Simon Reynaert,et al."Risk of short‐term biodiversity loss under more persistent precipitation regimes".Global Change Biology (2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论