GSTDTAP  > 气候变化
Focusing on field analysis
admin
2021-01-27
发布年2021
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Integration of polymeric membrane/dielectric sphere assemblies in microfluidic chips for enhanced-contrast imaging with low-magnification systems, doi 10.1117/1.JOM.1.1.014001. view more 

Credit: Viri et al.

The development of cost-efficient, portable microscopy units would greatly expand their use in remote field locations and in places with fewer resources, potentially leading to easier on-site analysis of contaminants such as E. coli in water sources as well as other practical applications.

Current microscopy systems, like those used to image micro-organisms, are expensive because they are optimized for maximum resolution and minimal deformation of the images the systems produce. But some situations do not require such optimization--for instance, simply detecting the presence of pathogens in water. One potential approach to developing a low-cost portable microscopy system is to use transparent microspheres in combination with affordable low-magnification objective lenses to increase image resolution and sensitivity.

A group of researchers from Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland published a study on such an assembly composed of barium titanate spheres that are partially embedded in thin polymeric membranes. The result of their work, appearing in SPIE's new Journal of Optical Microsystems, is a proposed method to fabricate microfluidic chips using the assembly for enhanced detection of bacteria. Such customized chips with fluidic and optical components already integrated have many benefits when combined with portable low-end imagers for analyses at remote sites or in resource-limited regions.

"Cost reduction and portability are of benefit to the proliferation of analytical devices, especially in limited-resource contexts, and the integration of affordable micro-optical elements directly onto microfluidic chips can highly contribute to this," said Martin Gijs, a professor at EPFL and an author of the published work.

The assembly's ability to enhance bacteria detection paves the way for other applications friendly to use at remote sites. Additionally, the researchers revealed an opportunity to customize specific functional microfluidic elements. Such integrations could bring to fruition applications such as on-site antibiotic testing.

Given falling costs of the components and fabrication methods, the researchers' proposed fabrication protocol could be adapted easily for a wide variety of microfluidic chips with integrated optical elements. Considered along with the lower cost of low-end imaging systems, the approach could sharply increase the use of such microscopy systems in low-resource locations for on-site analyses.

###

Read the open access paper: Vittorio Viri, Daniel Migliozzi, and Martin A.M. Gijs, "Integration of polymeric membrane/dielectric sphere assemblies in microfluidic chips for enhanced-contrast imaging with low-magnification systems," J. Opt. Microsys. 1(1), 014001 (2021) doi 10.1117/1.JOM.1.1.014001.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/312812
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Focusing on field analysis. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。