GSTDTAP  > 气候变化
Chinese scientists use knowledge from climate system modeling to develop a global prediction system for the COVID-19 pandemic
admin
2021-02-05
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)
IMAGE

IMAGE: The campus of Lanzhou University. view more 

Credit: Chuwei Liu

At the time of writing, coronavirus disease 2019 (COVID-19) is seriously threatening human lives and health throughout the world. Before effective vaccines and specific drugs are developed, non-pharmacological interventions and numerical model predictions are essential. To this end, a group led by Professor Jianping Huang from Lanzhou University, China, developed the Global Prediction System of the COVID-19 Pandemic (GPCP).

Jianping Huang is a Professor in the College of Atmospheric Sciences and a Director of the Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, China. He has for a long time been dedicated to studying long-term climate prediction, dust-cloud interaction, and semi-arid climate change by combining field observations and theoretical research. Lockdown in early 2020 seriously affected his research. Therefore, stuck at home, he held online discussions with his team members on how their experience of developing climate system models might be able to contribute to fighting the pandemic. He didn't expect much response, but was surprised and touched when many of his colleagues responded enthusiastically.

Therefore, he and his team combined the results of 30 years of work in statistical dynamic numerical weather prediction methods, and developed the GPCP based on the traditional Susceptible-Infected-Recovered (SIR) infectious disease model. The improved methods and results were published in Atmospheric and Ocean Science Letters.

In order to combine epidemiological data and models, the Levenberg-Marquardt (LM) parameter optimization algorithm was proposed to identify epidemiological models, thereby constructing a Statistical-SIR model. The LM algorithm introduces a damping coefficient when calculating the Hessian matrix by the traditional least-squares method, thereby combining the advantage of the Gauss-Newton method and gradient descent method and improving the stability of parameters.

"From the simulation results of four selected countries with relatively high numbers of confirmed cases, the Statistical-Susceptible-Infected-Recovered model using the LM algorithm was found to be more consistent with the actual curve of the epidemic, being better able to reflect its trend of development," explains Prof. Huang.

In addition, the ensemble empirical mode decomposition (EEMD) model and the autoregressive moving average (ARMA) model were also used in combination to improve the prediction results of the GPCP. The EEMD method has been widely used in the fields of engineering, meteorology, ecology, etc. It can decompose the signal according to its own scale, and is suitable for non-stationary and nonlinear signal processing. The ARMA method can better predict time series.

"We found that the EEMD-ARMA method can be directly used to predict the number of daily new cases in countries with a smaller number of confirmed cases whose development trend cannot be predicted by the infectious disease model. Based on the results, this method is more effective for improving prediction results and making direct predictions," concludes Prof. Huang.

The GPCP model developed by Jianping Huang's team can carry out targeted predictions for different countries and regions, and has achieved good prediction results. The team will continue to improve the model in the future to provide more accurate forecasts for different countries and regions.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/312680
专题气候变化
推荐引用方式
GB/T 7714
admin. Chinese scientists use knowledge from climate system modeling to develop a global prediction system for the COVID-19 pandemic. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。