GSTDTAP  > 气候变化
Iodine oxoacids drive rapid aerosol formation in pristine atmospheric areas
admin
2021-02-04
发布年2021
语种英语
国家美国
领域气候变化
正文(英文)

Iodine plays a bigger role than thought in rapid new particle formation (NPF) in relatively pristine regions of the atmosphere, such as along marine coasts, in the Arctic boundary layer or in the upper free troposphere, according to a new study. The authors say their measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid - another vapor that can form new particles under atmospheric conditions - in pristine atmospheric regions. Tiny particles suspended high in the atmosphere - aerosols - play an essential role in Earth's climate system. Clouds require airborne particles, or cloud condensation nuclei (CCN), to form, and aerosols serve as the seeds from which they grow. Atmospheric aerosols can have many terrestrial sources, like windblown dust, for example. However, under the right conditions, gas molecules can condense, cluster and grow large enough to form new aerosol particles. While NPF is estimated to account for more than half of all CCN, much about aerosol-cloud interaction remains a mystery and represents a major source of uncertainty in current climate models. So far, only a few vapors that can form new particles under atmospheric conditions have been identified. Along with sulfuric acid and a few others, iodic acid (HIO3) is one of the few vapors known to form new particles under atmospheric conditions, especially in coastal and marine regions, although the rates at which it's formed are poorly understood and presently considered to have limited global significance. Here, Xucheng He and colleagues present experimental evidence that suggests iodine plays a critical role in NPF, particularly in relatively pristine regions of the atmosphere. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, He et al. found that the nucleation rates of HIO3 particles are rapid and even exceed that of anthropogenic sulfuric acid-ammonia under similar conditions. What's more, the authors discovered that different iodic oxoacids play an important role in facilitating this rapid formation.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/312664
专题气候变化
推荐引用方式
GB/T 7714
admin. Iodine oxoacids drive rapid aerosol formation in pristine atmospheric areas. 2021.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。