GSTDTAP  > 气候变化
DOI10.1126/science.abf3342
Thermopower and harvesting heat
Xun Shi; Jian He
2021-01-22
发表期刊Science
出版年2021
英文摘要Harvesting and directly converting the enormous, yet largely untapped, reservoir of low-grade heat into electricity has the potential for immense economic and environmental impacts. To this end, thermoelectrics ([ 1 ][1]), thermionic capacitors ([ 2 ][2]), and thermocells ([ 3 ][3]) are among the state-of-the-art options. Despite distinct working principles of the internal circuit, the trio are heat engines in a general sense because they convert a temperature difference input Δ T into a device voltage output Δ V D that empowers the electrons in the external circuit to do work. The unit of the Δ V D/Δ T ratio, a numeric performance index of the energy conversion device, is the same as the thermopower. However, it is misleading to equate or compare this ratio to the thermopower, an intrinsic physical property of material described by a rank-2 tensor ([ 2 ][2]–[ 7 ][4]). The concept of thermopower originates in the Seebeck effect. When a Δ T is applied across an electronic conductor, charge carriers diffuse from the hot end to the cold end until the material's resultant open-circuit voltage difference (Δ V M) counterbalances further diffusion. The Δ V M measures the electrochemical potential difference due to the Δ T -induced carrier concentration gradient. The thermopower of an electronic conductor is encoded in the material-specific Δ V M/Δ T ratio with the sign denoting the type of the majority carriers and the magnitude relating to the average entropy per carrier charge (on the order of µV/K) ([ 8 ][5]). Likewise, the concept of ionic thermopower can be defined through the Soret effect of an ionic conductor (on the order of mV/K) ([ 9 ][6]). Although the thermoelectric device and thermionic capacitor build on the material's Seebeck effect and ionic Soret effect, respectively, a device is far more than the constituent active materials. Not only is the Δ V M of the constituent active materials and the electrodes the physical cause of the Δ V D, chemical reactions can also contribute to the voltage difference. The Δ V D of the thermocell, a Δ T -driven battery with a redox couple–containing electrolyte ([ 3 ][3]), includes the thermodiffusive and thermogalvanic voltages. The Δ V D/Δ T ratio of the thermocell hardly reflects the constituent active materials' thermopower. The Δ V D/Δ T ratio is therefore distinct from the thermopower in concept and in practice. It is faulty to reappropriate the formula of thermoelectric figure of merit of a material to assess the performance of a device, or to compare the Δ V D/Δ T ratios at face value. With the Δ T acting as the common driving force of the energy conversion process, the specific cause of the Δ V D dictates the device's working mode. The thermoelectric device and thermocell work in a continuous mode, and the power density is the primary performance metric. Meanwhile, the working mode of the thermionic capacitor is intermittent, and its performance ought to be assessed by the power density and energy density, like the performance of regular capacitors. ![Figure][7] Making heat work for us Differences in temperature can be used to drive current with a variety of different devices. Thermoelectrics rely on a p-type and an n-type material that drives electrons (e) or holes (h) from source to sink. Thermionic capacitors rely on separation of positive from negative ions. Thermocells require temperature difference–specific ion and electron cycling. The relative effectiveness of these devices requires care when comparing performance metrics. GRAPHIC: V. ALTOUNIAN/ SCIENCE The high Δ V D/Δ T ratios, on the order of mV/K, that have been reported for thermionic capacitors ([ 2 ][2], [ 5 ][8]) and thermocells ([ 3 ][3], [ 6 ][9], [ 7 ][4]) are vital to the application of wearable electronics, but with certain trade-offs. For thermionic capacitors and thermocells (see the figure), the normalized maximum power densities, PA−1 Δ T−2 , where P is the maximum power output and A is the module's cross-sectional area perpendicular to the heat flow direction, are at least one order of magnitude lower than for thermoelectric devices ([ 10 ][10]–[ 12 ][11]). This difference is due to large internal resistances. Shortening the interelectrode spacing to reduce the internal resistance falls short as it will diminish the driving force, Δ T . A Δ T = 20 K typical in low-grade heat harvesting energetically equals 1.72 meV, compared to eV-level driving forces in regular capacitors and batteries. The power density and energy density of thermionic capacitors ([ 2 ][2]) are orders of magnitude lower than those of regular capacitors and batteries ([ 13 ][12]) because of weak driving forces. The multifold nature of the energy conversion process in the device further explains these performance discrepancies, where the challenges and opportunities lie. The efficiency of a multifold energy conversion process is subject to the efficiency of each subprocess and the coupling of the subprocesses. Thermoelectricity is a single-fold process with the simplest working principle. The working media in the internal and external circuits are both electrons. The energy conversion process of the thermionic capacitor is twofold. The ion diffusion is driven by Δ T and the interactions between the accumulated ions and the electrodes ([ 2 ][2]). The energy conversion process of the thermocell includes the ionic diffusion driven by Δ T and by the chemical reaction–induced ionic concentration gradient, the redox reactions at the electrodes, and the interactions between the electrolyte and the electrodes ([ 3 ][3]). Understanding these differences is critical to the integrative development of low-grade heat harvesting technologies in the short and long term. 1. [↵][13]1. J. He, 2. T. M. Tritt , Science 357, 6358 (2017). [OpenUrl][14] 2. [↵][15]1. D. Zhao et al ., Energy Environ. Sci. 9, 1450 (2016). [OpenUrl][16] 3. [↵][17]1. B. Yu et al ., Science 370, 342 (2020). [OpenUrl][18][Abstract/FREE Full Text][19] 4. 1. C.-G. Han et al ., Science 368, 1091 (2020). [OpenUrl][20][Abstract/FREE Full Text][21] 5. [↵][22]1. H. L. Cheng, 2. X. He, 3. Z. Fan, 4. J. Ouyang , Adv. Energy Mater. 9, 1901085 (2019). [OpenUrl][23] 6. [↵][24]1. P. Yang et al ., Angew. Chem. Int. Ed. 55, 12050 (2016). [OpenUrl][25][CrossRef][26][PubMed][27] 7. [↵][28]1. A. Taheri et al ., Sustainable Energy Fuels 2, 1806 (2018). [OpenUrl][29][CrossRef][30] 8. [↵][31]1. V. Z. Kresin, 2. W. A. Little 1. P. Chaikin , in Organic Superconductivity, V. Z. Kresin, W. A. Little, Eds. (Springer, 1990), pp. 101–115. 9. [↵][32]1. W. Köhler, 2. S. Wiegand 1. J. Janek, 2. C. Corte, 3. A. B. Lidiard , in Fluid Mixtures, W. Köhler, S. Wiegand, Eds. (Springer, 2002), pp. 146–183. 10. [↵][33]1. T. Kuroki et al ., J. Electron. Mater. 43, 2405 (2014). [OpenUrl][34] 11. 1. F. Hao et al ., Energy Environ. Sci. 9, 3120 (2016). [OpenUrl][35] 12. [↵][36]1. F. Suarez et al ., Appl. Energy 202, 736 (2017). [OpenUrl][37] 13. [↵][38]1. P. Simon, 2. Y. Gogotsi , Nat. Mater. 19, 1151 (2020). [OpenUrl][39] Acknowledgments: We acknowledge P. Qiu, S. Qu, L. Chen, and D. Liebenberg for helpful discussions. X.S. is supported by the National Natural Science Foundation of China (no. 51625205). [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-7 [5]: #ref-8 [6]: #ref-9 [7]: pending:yes [8]: #ref-5 [9]: #ref-6 [10]: #ref-10 [11]: #ref-12 [12]: #ref-13 [13]: #xref-ref-1-1 "View reference 1 in text" [14]: {openurl}?query=rft.jtitle%253DScience%26rft.volume%253D357%26rft.spage%253D6358%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [15]: #xref-ref-2-1 "View reference 2 in text" [16]: {openurl}?query=rft.jtitle%253DEnergy%2BEnviron.%26rft.volume%253D9%26rft.spage%253D1450%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [17]: #xref-ref-3-1 "View reference 3 in text" [18]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abd6749%26rft_id%253Dinfo%253Apmid%252F32913001%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzAvNjUxNC8zNDIiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzEvNjUyNy8zNDMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [20]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaz5045%26rft_id%253Dinfo%253Apmid%252F32354840%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNjgvNjQ5NS8xMDkxIjtzOjQ6ImF0b20iO3M6MjI6Ii9zY2kvMzcxLzY1MjcvMzQzLmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [22]: #xref-ref-5-1 "View reference 5 in text" [23]: {openurl}?query=rft.jtitle%253DAdv.%2BEnergy%2BMater.%26rft.volume%253D9%26rft.spage%253D1901085%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: #xref-ref-6-1 "View reference 6 in text" [25]: {openurl}?query=rft.jtitle%253DAngew.%2BChem.%2BInt.%2BEd.%26rft.volume%253D55%26rft.spage%253D12050%26rft_id%253Dinfo%253Adoi%252F10.1002%252Fanie.201606314%26rft_id%253Dinfo%253Apmid%252F27557890%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1002/anie.201606314&link_type=DOI [27]: /lookup/external-ref?access_num=27557890&link_type=MED&atom=%2Fsci%2F371%2F6527%2F343.atom [28]: #xref-ref-7-1 "View reference 7 in text" [29]: {openurl}?query=rft.jtitle%253DSustainable%2BEnergy%2BFuels%26rft.volume%253D2%26rft.spage%253D1806%26rft_id%253Dinfo%253Adoi%252F10.1039%252FC8SE00224J%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [30]: /lookup/external-ref?access_num=10.1039/C8SE00224J&link_type=DOI [31]: #xref-ref-8-1 "View reference 8 in text" [32]: #xref-ref-9-1 "View reference 9 in text" [33]: #xref-ref-10-1 "View reference 10 in text" [34]: {openurl}?query=rft.jtitle%253DJ.%2BElectron.%2BMater.%26rft.volume%253D43%26rft.spage%253D2405%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: {openurl}?query=rft.jtitle%253DEnergy%2BEnviron.%2BSci.%26rft.volume%253D9%26rft.spage%253D3120%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: #xref-ref-12-1 "View reference 12 in text" [37]: {openurl}?query=rft.jtitle%253DAppl.%2BEnergy%26rft.volume%253D202%26rft.spage%253D736%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: #xref-ref-13-1 "View reference 13 in text" [39]: {openurl}?query=rft.jtitle%253DNat.%2BMater.%26rft.volume%253D19%26rft.spage%253D1151%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/312352
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Xun Shi,Jian He. Thermopower and harvesting heat[J]. Science,2021.
APA Xun Shi,&Jian He.(2021).Thermopower and harvesting heat.Science.
MLA Xun Shi,et al."Thermopower and harvesting heat".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xun Shi]的文章
[Jian He]的文章
百度学术
百度学术中相似的文章
[Xun Shi]的文章
[Jian He]的文章
必应学术
必应学术中相似的文章
[Xun Shi]的文章
[Jian He]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。