GSTDTAP  > 气候变化
DOI10.1126/science.abf3543
Between a hydrogen and a covalent bond
Mischa Bonn; Johannes Hunger
2021-01-08
发表期刊Science
出版年2021
英文摘要The concept of a molecule as a unit of bound atoms can be traced to Robert Boyle's 1661 treatise “The Sceptical Chymist” ([ 1 ][1]). Chemists often depict the strong covalent bonds in molecules formed through electronic interactions of atoms by sticks or springs. By contrast, much weaker attractive forces between molecules in liquids and solids, such as van der Waals forces, are typically unspecific and nondirectional and cannot be represented by sticks or springs. An exception is the hydrogen bond (H-bond) ([ 2 ][2]), which can create relatively strong directional interactions between molecules when the atoms that carry opposite partial charges attract each other. Discrimination between very strong H-bonds and covalent bonds can become somewhat arbitrary. On page 160 of this issue, Dereka et al. ([ 3 ][3]) study what happens if the strength of an intramolecular hydrogen bond becomes comparable to the strength of the intermolecular covalent bonds, blurring the concept of what a “molecule” is. This study touches on the foundations of chemistry, in that our understanding of chemical bonding as sticks or springs is not without contention. Indeed, it is not evident how to precisely define such “chemical bonds” ([ 4 ][4]), and as recently as 2013, an international conference was called to explore new ways to define, describe, and make sense of chemical bonding ([ 5 ][5]). Such efforts are not purely academic exercises. During chemical conversion, covalent bonds often have to convert to weaker H-bonds ([ 6 ][6]), and proton transport in water relies on the continuous interconversion of covalent and H-bonds. Dereka et al. captured the intermediate case in a liquid for a negatively charged fluoride-hydrogen-fluoride (FHF−) complex in water, where the hydrogen atom is precisely equally shared between two fluorine atoms. This state is stable, despite water molecules frequently colliding with the complex. These types of bonds can be characterized by different potential energy surfaces upon displacing the hydrogen's nucleus out of its equilibrium position (see the figure, top) ([ 7 ][7]). ![Figure][8] When bonding gets blurry Covalent bonds to hydrogen atoms in molecules can weaken in the presence of hydrogen bond acceptors. The study by Dereka et al. of FHF− can provide insight into such bonds in other contexts, such as the Zundel cation of water. GRAPHIC: JOSHUA BIRD/ SCIENCE The potential for the proton of a covalent bond F-H is relatively harmonic and symmetric with respect to the potential minimum position. When H-bonds are formed upon interaction with a fluoride anion, the hydrogen atom interacts weakly with the H-bond acceptor, which slightly weakens the strong covalent bond with the partner fluorine within its molecule and induces asymmetry. For increasingly strong H-bonds, the covalent bond further weakens, and the hydrogen becomes increasingly delocalized between its covalent partner atom and the H-bond accepting group. Using advanced spectroscopic tools to study the H-atom moving in this potential, that is, the molecular vibrations, Dereka et al. showed that the FHF− anion exists as a symmetric molecular entity in water for a sufficient time to study it. The distance between the F− anions in solution is so short that the proton resides in a fully symmetric potential with no barrier for the transfer between the two F− ions. Thus, the proton is precisely centered and equally shared between the two F− anions. An extensive computational study revealed that the bonds are neither simply covalent nor a simple H-bond. The authors captured the very transition between covalent and H-bonding and could show that the pure interaction of the partial charge of the atoms is insufficient to quantitatively describe bonding. The existence of a hybrid covalent-hydrogen bonded state not only challenges our current understanding of what a chemical bond exactly is but also offers the opportunity to better understand chemical reactions, where “intermediate reaction states” are often invoked but rarely studied directly. The obtained charge distribution upon bonding could, for example, be directly used to improve our current models to describe bond breaking and formation classically, notably in reactive force fields ([ 8 ][9]). The findings also have direct implications for proton transfer reactions in catalysis or proton transfer in water ([ 9 ][10]). The FHF− anion can be viewed as a proxy of the idealized, positively charged Zundel cation ([ 10 ][11]–[ 12 ][12]) in water, where two water molecules share one excess proton (H+) (see the figure, bottom). Unlike the Zundel cation, the molecular simplicity of FHF− allows for an unambiguous correlation of the bonding properties and spectroscopic signatures. The study of Dereka et al. holds substantial promise for obtaining a deeper understanding of strong bonding with its unprecedented snapshot of such a bonding intermediate. Future work will undoubtedly focus on the dynamics of the interconversion in different systems ([ 13 ][13]). Many exciting questions remain open, including what role the environment (for example, the fluctuating solvent) plays in such interconversion, what molecular motions trigger these interconversions, and how these systems can be steered in a desired direction. Forthcoming answers to these questions should be relevant for proton transport in biology and technologies such as fuel-cell membranes. 1. [↵][14]1. R. Boyle , The Sceptical Chymist (Dover, London, 1661). 2. [↵][15]1. P. A. Kollman, 2. L. C. Allen , Chem. Rev. 72, 283 (1972). [OpenUrl][16][CrossRef][17][Web of Science][18] 3. [↵][19]1. B. Dereka et al ., Science 371, 160 (2021). [OpenUrl][20][Abstract/FREE Full Text][21] 4. [↵][22]1. P. Ball , Nature 469, 26 (2011). [OpenUrl][23][CrossRef][24][PubMed][25][Web of Science][26] 5. [↵][27]1. J. M. Ugalde, 2. P. Bultinck, 3. F. M. Bickelhaupt, 4. A. N. Alexandrova , J. Phys. Chem. A 120, 9353 (2016). [OpenUrl][28] 6. [↵][29]1. R. Srinivasan, 2. J. S. Feenstra, 3. S. T. Park, 4. S. Xu, 5. A. H. Zewail , J. Am. Chem. Soc. 126, 2266 (2004). [OpenUrl][30][PubMed][31] 7. [↵][32]1. G. S. Denisov, 2. J. Mavri, 3. L. Sobczyk , in Hydrogen Bonding—New Insights (Springer Netherlands, 2006), pp. 377–416. 8. [↵][33]1. C. Chen, 2. C. Arntsen, 3. G. A. Voth , J. Chem. Phys. 147, 161719 (2017). [OpenUrl][34] 9. [↵][35]1. D. Marx, 2. M. E. Tuckerman, 3. J. Hutter, 4. M. Parrinello , Nature 397, 601 (1999). [OpenUrl][36][CrossRef][37][Web of Science][38] 10. [↵][39]1. M. Thämer, 2. L. De Marco, 3. K. Ramasesha, 4. A. Mandal, 5. A. Tokmakoff , Science 350, 78 (2015). [OpenUrl][40][Abstract/FREE Full Text][41] 11. 1. F. Dahms, 2. B. P. Fingerhut, 3. E. T. J. Nibbering, 4. E. Pines, 5. T. Elsaesser , Science 357, 491 (2017). [OpenUrl][42][Abstract/FREE Full Text][43] 12. [↵][44]1. J. A. Fournier, 2. W. B. Carpenter, 3. N. H. C. Lewis, 4. A. Tokmakoff , Nat. Chem. 10, 932 (2018). [OpenUrl][45][CrossRef][46][PubMed][47] 13. [↵][48]1. F. Dahms et al ., Angew. Chem. 128, 10758 (2016). [OpenUrl][49] Acknowledgments: We are grateful for support from the MaxWater Initiative of the Max Planck Society. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: pending:yes [9]: #ref-8 [10]: #ref-9 [11]: #ref-10 [12]: #ref-12 [13]: #ref-13 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: #xref-ref-2-1 "View reference 2 in text" [16]: {openurl}?query=rft.jtitle%253DChem.%2BRev.%26rft.volume%253D72%26rft.spage%253D283%26rft_id%253Dinfo%253Adoi%252F10.1021%252Fcr60277a004%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [17]: /lookup/external-ref?access_num=10.1021/cr60277a004&link_type=DOI [18]: /lookup/external-ref?access_num=A1972M509500004&link_type=ISI [19]: #xref-ref-3-1 "View reference 3 in text" [20]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DDereka%26rft.auinit1%253DB.%26rft.volume%253D371%26rft.issue%253D6525%26rft.spage%253D160%26rft.epage%253D164%26rft.atitle%253DCrossover%2Bfrom%2Bhydrogen%2Bto%2Bchemical%2Bbonding%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.abe1951%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNzEvNjUyNS8xNjAiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzEvNjUyNS8xMjMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [22]: #xref-ref-4-1 "View reference 4 in text" [23]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DBall%26rft.auinit1%253DP.%26rft.volume%253D469%26rft.issue%253D7328%26rft.spage%253D26%26rft.epage%253D28%26rft.atitle%253DBeyond%2Bthe%2Bbond.%26rft_id%253Dinfo%253Adoi%252F10.1038%252F469026a%26rft_id%253Dinfo%253Apmid%252F21209641%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/external-ref?access_num=10.1038/469026a&link_type=DOI [25]: /lookup/external-ref?access_num=21209641&link_type=MED&atom=%2Fsci%2F371%2F6525%2F123.atom [26]: /lookup/external-ref?access_num=000285921600012&link_type=ISI [27]: #xref-ref-5-1 "View reference 5 in text" [28]: {openurl}?query=rft.jtitle%253DJ.%2BPhys.%2BChem.%2BA%26rft.volume%253D120%26rft.spage%253D9353%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: #xref-ref-6-1 "View reference 6 in text" [30]: {openurl}?query=rft.jtitle%253DJournal%2Bof%2Bthe%2BAmerican%2BChemical%2BSociety%26rft.stitle%253DJournal%2Bof%2Bthe%2BAmerican%2BChemical%2BSociety%26rft.aulast%253DSrinivasan%26rft.auinit1%253DR.%26rft.volume%253D126%26rft.issue%253D8%26rft.spage%253D2266%26rft.epage%253D2267%26rft.atitle%253DDirect%2Bdetermination%2Bof%2Bhydrogen-bonded%2Bstructures%2Bin%2Bresonant%2Band%2Btautomeric%2Breactions%2Busing%2Bultrafast%2Belectron%2Bdiffraction.%26rft_id%253Dinfo%253Apmid%252F14982405%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [31]: /lookup/external-ref?access_num=14982405&link_type=MED&atom=%2Fsci%2F371%2F6525%2F123.atom [32]: #xref-ref-7-1 "View reference 7 in text" [33]: #xref-ref-8-1 "View reference 8 in text" [34]: {openurl}?query=rft.jtitle%253DJ.%2BChem.%2BPhys.%26rft.volume%253D147%26rft.spage%253D161719%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [35]: #xref-ref-9-1 "View reference 9 in text" [36]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D397%26rft.spage%253D601%26rft_id%253Dinfo%253Adoi%252F10.1038%252F17579%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [37]: /lookup/external-ref?access_num=10.1038/17579&link_type=DOI [38]: /lookup/external-ref?access_num=000078738500045&link_type=ISI [39]: #xref-ref-10-1 "View reference 10 in text" [40]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DThamer%26rft.auinit1%253DM.%26rft.volume%253D350%26rft.issue%253D6256%26rft.spage%253D78%26rft.epage%253D82%26rft.atitle%253DUltrafast%2B2D%2BIR%2Bspectroscopy%2Bof%2Bthe%2Bexcess%2Bproton%2Bin%2Bliquid%2Bwater%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aab3908%26rft_id%253Dinfo%253Apmid%252F26430117%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [41]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjExOiIzNTAvNjI1Ni83OCI7czo0OiJhdG9tIjtzOjIyOiIvc2NpLzM3MS82NTI1LzEyMy5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [42]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aan5144%26rft_id%253Dinfo%253Apmid%252F28705988%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [43]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNTcvNjM1MC80OTEiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNzEvNjUyNS8xMjMuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [44]: #xref-ref-12-1 "View reference 12 in text" [45]: {openurl}?query=rft.jtitle%253DNat.%2BChem.%26rft.volume%253D10%26rft.spage%253D932%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41557-018-0091-y%26rft_id%253Dinfo%253Apmid%252F30061612%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [46]: /lookup/external-ref?access_num=10.1038/s41557-018-0091-y&link_type=DOI [47]: /lookup/external-ref?access_num=30061612&link_type=MED&atom=%2Fsci%2F371%2F6525%2F123.atom [48]: #xref-ref-13-1 "View reference 13 in text" [49]: {openurl}?query=rft.jtitle%253DAngew.%2BChem.%26rft.volume%253D128%26rft.spage%253D10758%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/310435
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Mischa Bonn,Johannes Hunger. Between a hydrogen and a covalent bond[J]. Science,2021.
APA Mischa Bonn,&Johannes Hunger.(2021).Between a hydrogen and a covalent bond.Science.
MLA Mischa Bonn,et al."Between a hydrogen and a covalent bond".Science (2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mischa Bonn]的文章
[Johannes Hunger]的文章
百度学术
百度学术中相似的文章
[Mischa Bonn]的文章
[Johannes Hunger]的文章
必应学术
必应学术中相似的文章
[Mischa Bonn]的文章
[Johannes Hunger]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。