GSTDTAP  > 气候变化
New proposal for how aerosols drive increased atmospheric convection in thunderstorm clouds
admin
2020-12-31
发布年2020
语种英语
国家美国
领域气候变化
正文(英文)

High in the clouds, atmospheric aerosols, including anthropogenic air pollutants, increase updraft speeds in storm clouds by making the surrounding air more humid, a new study finds. The results offer a new mechanism explaining the widely observed - but poorly understood - atmospheric phenomenon and provide a physical basis for predicting increasing thunderstorm intensity, particularly in the high-aerosol regions of the tropics. Observations worldwide have highlighted aerosols' impact on weather, including their ability to strengthen convection in deep convective clouds, like those that form during thunderstorms, resulting in larger and more severe storms. Previous studies have suggested two mechanisms by which aerosol concentrations could affect the intensity of convection - both involving the release of latent heat into the atmosphere as moisture within clouds condenses (the "warm-phase") or freezes ("cold-phase") to airborne particles. However, the link between aerosols and increased convection remains unclear and represents a major obstacle to understanding current and future severe weather risks - a particularly salient topic as human activities have become a significant source of atmospheric aerosols. To address this, Tristan Abbot and Timothy Cronin use the System for Atmospheric Modeling (SAM), an atmospheric model that can simulate detailed cloud processes, to study cloud-aerosol interactions. While the results show that the high-resolution simulations could reproduce the observed link between aerosols and convection, Abbott and Cronin found that neither of the previously proposed mechanisms can fully explain this invigoration. The authors offer a third possibility: high aerosol concentrations increase environmental humidity by producing more clouds, which can mix more condensed water into the surrounding air. Because humid air favors stronger updrafts, atmospheric convection can intensify, producing invigorated thunderstorms.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/309232
专题气候变化
推荐引用方式
GB/T 7714
admin. New proposal for how aerosols drive increased atmospheric convection in thunderstorm clouds. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。