GSTDTAP  > 气候变化
DOI10.1111/gcb.15481
Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming
Elaine F. Pegoraro; Marguerite E. Mauritz; Kiona Ogle; Christopher H. Ebert; Edward A. G. Schuur
2020-12-24
发表期刊Global Change Biology
出版年2020
英文摘要

Almost half of the global terrestrial soil carbon (C) is stored in the northern circumpolar permafrost region, where air temperatures are increasing two times faster than the global average. As climate warms, permafrost thaws and soil organic matter becomes vulnerable to greater microbial decomposition. Long‐term soil warming of ice‐rich permafrost can result in thermokarst formation that creates variability in environmental conditions. Consequently, plant and microbial proportional contributions to ecosystem respiration may change in response to long‐term soil warming. Natural abundance δ13C and Δ14C of aboveground and belowground plant material, and of young and old soil respiration were used to inform a mixing model to partition the contribution of each source to ecosystem respiration fluxes. We employed a hierarchical Bayesian approach that incorporated gross primary productivity and environmental drivers to constrain source contributions. We found that long‐term experimental permafrost warming introduced a soil hydrology component that interacted with temperature to affect old soil C respiration. Old soil C loss was suppressed in plots with warmer deep soil temperatures because they tended to be wetter. When soil volumetric water content significantly decreased in 2018 relative to 2016 and 2017, the dominant respiration sources shifted from plant aboveground and young soil respiration to old soil respiration. The proportion of ecosystem respiration from old soil C accounted for up to 39% of ecosystem respiration and represented a 30‐fold increase compared to the wet‐year average. Our findings show that thermokarst formation may act to moderate microbial decomposition of old soil C when soil is highly saturated. However, when soil moisture decreases, a higher proportion of old soil C is vulnerable to decomposition and can become a large flux to the atmosphere. As permafrost systems continue to change with climate, we must understand the thresholds that may propel these systems from a C sink to a source.

领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/309016
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Elaine F. Pegoraro,Marguerite E. Mauritz,Kiona Ogle,et al. Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming[J]. Global Change Biology,2020.
APA Elaine F. Pegoraro,Marguerite E. Mauritz,Kiona Ogle,Christopher H. Ebert,&Edward A. G. Schuur.(2020).Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming.Global Change Biology.
MLA Elaine F. Pegoraro,et al."Lower soil moisture and deep soil temperatures in thermokarst features increase old soil carbon loss after 10 years of experimental permafrost warming".Global Change Biology (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Elaine F. Pegoraro]的文章
[Marguerite E. Mauritz]的文章
[Kiona Ogle]的文章
百度学术
百度学术中相似的文章
[Elaine F. Pegoraro]的文章
[Marguerite E. Mauritz]的文章
[Kiona Ogle]的文章
必应学术
必应学术中相似的文章
[Elaine F. Pegoraro]的文章
[Marguerite E. Mauritz]的文章
[Kiona Ogle]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。