GSTDTAP  > 地球科学
DOI10.1073/pnas.2014378117
Enhanced trace element mobilization by Earth’s ice sheets
Jon R. Hawkings; Mark L. Skidmore; Jemma L. Wadham; John C. Priscu; Peter L. Morton; Jade E. Hatton; Christopher B. Gardner; Tyler J. Kohler; Marek Stibal; Elizabeth A. Bagshaw; August Steigmeyer; Joel Barker; John E. Dore; W. Berry Lyons; Martyn Tranter; Robert G. M. Spencer; the SALSA Science Team
2020-11-23
发表期刊Proceedings of the National Academy of Science
出版年2020
英文摘要

Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/304847
专题地球科学
推荐引用方式
GB/T 7714
Jon R. Hawkings,Mark L. Skidmore,Jemma L. Wadham,等. Enhanced trace element mobilization by Earth’s ice sheets[J]. Proceedings of the National Academy of Science,2020.
APA Jon R. Hawkings.,Mark L. Skidmore.,Jemma L. Wadham.,John C. Priscu.,Peter L. Morton.,...&the SALSA Science Team.(2020).Enhanced trace element mobilization by Earth’s ice sheets.Proceedings of the National Academy of Science.
MLA Jon R. Hawkings,et al."Enhanced trace element mobilization by Earth’s ice sheets".Proceedings of the National Academy of Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jon R. Hawkings]的文章
[Mark L. Skidmore]的文章
[Jemma L. Wadham]的文章
百度学术
百度学术中相似的文章
[Jon R. Hawkings]的文章
[Mark L. Skidmore]的文章
[Jemma L. Wadham]的文章
必应学术
必应学术中相似的文章
[Jon R. Hawkings]的文章
[Mark L. Skidmore]的文章
[Jemma L. Wadham]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。