Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1111/gcb.15441 |
Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils | |
Roberta Farina; Renata Sá; ndor; Mohamed Abdalla; Jorge Á; lvaro‐; Fuentes; Luca Bechini; Martin A. Bolinder; Lorenzo Brilli; Claire Chenu; Hugues Clivot; Massimiliano De Antoni Migliorati; Claudia Di Bene; Christopher D. Dorich; Fiona Ehrhardt; Fabien Ferchaud; Nuala Fitton; Rosa Francaviglia; Uwe Franko; Donna L. Giltrap; Brian B. Grant; Bertrand Guenet; Matthew T. Harrison; Miko U. F. Kirschbaum; Katrin Kuka; Liisa Kulmala; Jari Liski; Matthew J. McGrath; Elizabeth Meier; Lorenzo Menichetti; Fernando Moyano; Claas Nendel; Sylvie Recous; Nils Reibold; Anita Shepherd; Ward N. Smith; Pete Smith; Jean‐; Franç; ois Soussana; Tommaso Stella; Arezoo Taghizadeh‐; Toosi; Elena Tsutskikh; Gianni Bellocchi | |
2020-11-24 | |
发表期刊 | Global Change Biology
![]() |
出版年 | 2020 |
英文摘要 | Simulation models represent soil organic carbon (SOC) dynamics in global carbon (C) cycle scenarios to support climate‐change studies. It is imperative to increase confidence in long‐term predictions of SOC dynamics by reducing the uncertainty in model estimates. We evaluated SOC simulated from an ensemble of 26 process‐based C models by comparing simulations to experimental data from seven long‐term bare‐fallow (vegetation‐free) plots at six sites: Denmark (two sites), France, Russia, Sweden and the United Kingdom. The decay of SOC in these plots has been monitored for decades since the last inputs of plant material, providing the opportunity to test decomposition without the continuous input of new organic material. The models were run independently over multi‐year simulation periods (from 28 to 80 years) in a blind test with no calibration (Bln) and with the following three calibration scenarios, each providing different levels of information and/or allowing different levels of model fitting: (a) calibrating decomposition parameters separately at each experimental site (Spe); (b) using a generic, knowledge‐based, parameterization applicable in the Central European region (Gen); and (c) using a combination of both (a) and (b) strategies (Mix). We addressed uncertainties from different modelling approaches with or without spin‐up initialization of SOC. Changes in the multi‐model median (MMM) of SOC were used as descriptors of the ensemble performance. On average across sites, Gen proved adequate in describing changes in SOC, with MMM equal to average SOC (and standard deviation) of 39.2 (±15.5) Mg C/ha compared to the observed mean of 36.0 (±19.7) Mg C/ha (last observed year), indicating sufficiently reliable SOC estimates. Moving to Mix (37.5 ± 16.7 Mg C/ha) and Spe (36.8 ± 19.8 Mg C/ha) provided only marginal gains in accuracy, but modellers would need to apply more knowledge and a greater calibration effort than in Gen, thereby limiting the wider applicability of models. |
领域 | 气候变化 ; 资源环境 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/304816 |
专题 | 气候变化 资源环境科学 |
推荐引用方式 GB/T 7714 | Roberta Farina,Renata Sá,ndor,等. Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils[J]. Global Change Biology,2020. |
APA | Roberta Farina.,Renata Sá.,ndor.,Mohamed Abdalla.,Jorge Á.,...&Gianni Bellocchi.(2020).Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils.Global Change Biology. |
MLA | Roberta Farina,et al."Ensemble modelling, uncertainty and robust predictions of organic carbon in long‐term bare‐fallow soils".Global Change Biology (2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论