GSTDTAP  > 气候变化
DOI10.1029/2020GL090458
Size polydispersity tunes slip avalanches of granular gouge
Gang Ma; Yuxiong Zou; Ke Gao; Jidong Zhao; Wei Zhou
2020-11-16
发表期刊Geophysical Research Letters
出版年2020
英文摘要

Granular materials have frequently been used as representations of natural fault gouges. Although they can reproduce proper avalanche behaviors, the universality of the scaling exponent of avalanche size remains debatable. As a core issue in both amorphous plasticity and geophysics, avalanche universality may help reconcile the avalanche behaviors of earthquake and granular materials into the same universality class. We examine numerically the signatures of stress avalanches emerging from quasi‐static shear of granular materials with different size polydispersity. A persistent serrated plastic flow phenomenon is observed in our models with varying polydispersity. The stress drop is well defined by a truncated power‐law distribution P(s)~sτexp(−s/smax). The exponent τ and cutoff stress drop smax show a clear dependence on polydispersity, which reflects a tuned criticality. We further calculate the effective temperature from the statistics of energy fluctuations. The effective temperature volatility can be used to explain the tuned critical behaviors of granular gouge.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/304355
专题气候变化
推荐引用方式
GB/T 7714
Gang Ma,Yuxiong Zou,Ke Gao,et al. Size polydispersity tunes slip avalanches of granular gouge[J]. Geophysical Research Letters,2020.
APA Gang Ma,Yuxiong Zou,Ke Gao,Jidong Zhao,&Wei Zhou.(2020).Size polydispersity tunes slip avalanches of granular gouge.Geophysical Research Letters.
MLA Gang Ma,et al."Size polydispersity tunes slip avalanches of granular gouge".Geophysical Research Letters (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gang Ma]的文章
[Yuxiong Zou]的文章
[Ke Gao]的文章
百度学术
百度学术中相似的文章
[Gang Ma]的文章
[Yuxiong Zou]的文章
[Ke Gao]的文章
必应学术
必应学术中相似的文章
[Gang Ma]的文章
[Yuxiong Zou]的文章
[Ke Gao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。