Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.1029/2020GL087685 |
Well log generation via ensemble long short‐term memory (EnLSTM) network | |
Yuntian Chen; Dongxiao Zhang | |
2020-11-16 | |
发表期刊 | Geophysical Research Letters
![]() |
出版年 | 2020 |
英文摘要 | In this study, we propose an ensemble long short‐term memory (EnLSTM) network, which can be trained on a small dataset and process sequential data. The EnLSTM is built by combining the ensemble neural network and the cascaded long short‐term memory network to leverage their complementary strengths. Two perturbation methods are applied to resolve the issues of over‐convergence and disturbance compensation. The EnLSTM is compared with commonly‐used models on a published dataset, and proven to be the state‐of‐the‐art model in generating well logs. In the case study, 12 well logs that cannot be measured while drilling are generated based on the logs available in the drilling process. The EnLSTM is capable of reducing cost and saving time in practice. |
领域 | 气候变化 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/304312 |
专题 | 气候变化 |
推荐引用方式 GB/T 7714 | Yuntian Chen,Dongxiao Zhang. Well log generation via ensemble long short‐term memory (EnLSTM) network[J]. Geophysical Research Letters,2020. |
APA | Yuntian Chen,&Dongxiao Zhang.(2020).Well log generation via ensemble long short‐term memory (EnLSTM) network.Geophysical Research Letters. |
MLA | Yuntian Chen,et al."Well log generation via ensemble long short‐term memory (EnLSTM) network".Geophysical Research Letters (2020). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yuntian Chen]的文章 |
[Dongxiao Zhang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yuntian Chen]的文章 |
[Dongxiao Zhang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yuntian Chen]的文章 |
[Dongxiao Zhang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论