GSTDTAP  > 气候变化
DOI10.1029/2020GL087685
Well log generation via ensemble long short‐term memory (EnLSTM) network
Yuntian Chen; Dongxiao Zhang
2020-11-16
发表期刊Geophysical Research Letters
出版年2020
英文摘要

In this study, we propose an ensemble long short‐term memory (EnLSTM) network, which can be trained on a small dataset and process sequential data. The EnLSTM is built by combining the ensemble neural network and the cascaded long short‐term memory network to leverage their complementary strengths. Two perturbation methods are applied to resolve the issues of over‐convergence and disturbance compensation. The EnLSTM is compared with commonly‐used models on a published dataset, and proven to be the state‐of‐the‐art model in generating well logs. In the case study, 12 well logs that cannot be measured while drilling are generated based on the logs available in the drilling process. The EnLSTM is capable of reducing cost and saving time in practice.

领域气候变化
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/304312
专题气候变化
推荐引用方式
GB/T 7714
Yuntian Chen,Dongxiao Zhang. Well log generation via ensemble long short‐term memory (EnLSTM) network[J]. Geophysical Research Letters,2020.
APA Yuntian Chen,&Dongxiao Zhang.(2020).Well log generation via ensemble long short‐term memory (EnLSTM) network.Geophysical Research Letters.
MLA Yuntian Chen,et al."Well log generation via ensemble long short‐term memory (EnLSTM) network".Geophysical Research Letters (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuntian Chen]的文章
[Dongxiao Zhang]的文章
百度学术
百度学术中相似的文章
[Yuntian Chen]的文章
[Dongxiao Zhang]的文章
必应学术
必应学术中相似的文章
[Yuntian Chen]的文章
[Dongxiao Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。