GSTDTAP  > 地球科学
DES­TINY+ – Ger­many and Japan be­gin new as­ter­oid mis­sion
admin
2020-11-12
发布年2020
语种英语
国家德国
领域地球科学
正文(英文)

How did life arrive on Earth? To investigate this and to address fundamental questions about the evolution of celestial bodies in our Solar System, the Japanese-German space mission DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science), will launch in 2024 on a journey to asteroid 3200 Phaethon. The German DESTINY+ Dust Analyzer (DDA) instrument on board the Japanese spacecraft will examine cosmic dust during the entire cruise phase to Phaethon, with dust particles that have escaped from the asteroid and are measured in its vicinity of particular interest to scientists. The cooperation agreement for the bilateral mission was signed on 11 November 2020 by Walther Pelzer, German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt; DLR) Executive Board Member and Head of the DLR Space Administration, and Hitoshi Kuninaka, Vice President of the Japan Aerospace Exploration Agency (JAXA). The signing ceremony was part of the joint strategy dialogue meeting between DLR and JAXA.

Asteroid Phaethon

"This mission once again underlines the benefits of bilateral cooperation between equal partners, as is the case with Germany and Japan," explains Pelzer. "With DESTINY+, we are continuing our successful cooperation on missions such as Hayabusa2, Martian Moons eXploration (MMX) and BepiColombo, and we are pleased to be able to make an important contribution to space research with the DDA dust instrument." In mid-2024, the DESTINY+ spacecraft is scheduled to launch on an Epsilon S launch vehicle from the Uchinoura Space Center in Japan, beginning a four-year journey to asteroid 3200 Phaethon. This celestial body is thought to be the origin of a cloud of dust orbiting the Sun, which rains a shower of meteors – referred to as the Geminids – onto Earth every December.

"With a minimum approach distance of approximately 21 million kilometres, Phaethon gets closer to the Sun than the planet Mercury," explains Carsten Henselowsky, DESTINY+ Project Manager at the DLR Space Administration. "In the process, its surface heats up to a temperature of over 700 degrees Celsius, causing the celestial body to release more dust particles. The aim of the DESTINY+ mission is to investigate such cosmic dust particles and to determine whether the arrival of extraterrestrial dust particles on Earth may have played a role in the creation of life on our planet." During its flyby the spacecraft will approach the asteroid down to a distance of approximately 500 kilometres, at which point the asteroid itself will be approximately 150 million kilometres from the Sun.

German dust instrument DDA is key instrument for the mission

The mission's key instrument is the German DDA dust instrument. This high-resolution mass spectrometer will collect and analyse cosmic dust particles in the vicinity of Phaethon upon flyby and during its entire journey. The measurements will pin down the origin of each dust particle. Of particular interest is the proportion of organic matter; scientists suspect that organic compounds and the associated elements, such as carbon – the basic building block for all life forms on Earth – may have been delivered to our planet by such dust particles. A telescopic camera, TCAP, and a multiband camera, MCAP on board the spacecraft are going to observe the surface of the celestial body during the flyby.

JAXA is responsible for the development, construction and launch of the spacecraft and the subsequent operation of the mission. The German DDA instrument is being developed under the leadership of the Institute of Space Systems (IRS) at the University of Stuttgart in cooperation with the company von Hoerner & Sulger GmbH. DDA is supported by the DLR Space Administration with funds from the German Federal Ministry of Economic Affairs and Energy (Bundesministerium für Wirtschaft und Energie; BMWi).

Contract signed as part of the DLR-JAXA Strategy Dialogue meeting

The German-Japanese cooperation agreement for the DESTINY+ mission was signed during the recent DLR/JAXA Strategy Dialogue annual meeting, which was attended by Anke Kaysser-Pyzalla, Chair of the DLR Executive Board, Walther Pelzer, DLR Executive Board Member and Head of the DLR Space Administration, and Hansjörg Dittus, DLR Executive Board Member for Space Research and Technology. The online conference covered the entire spectrum of the now more than 60 joint collaborations with a view to stepping up the successful cooperation. In February 2016, DLR and JAXA signed a comprehensive joint strategy agreement in Tokyo.

The aim of both partners is to coordinate their aerospace programmes more closely and to combine their expertise. An important topic in this context is the exploration of the Solar System. For example, together with French partners, DLR developed the asteroid lander MASCOT, which landed on asteroid Ryugu in autumn 2018 as part of JAXA's Hayabusa2 mission. The landing of a JAXA capsule in Australia containing samples from Ryugu is expected on 6 December 2020. In the future, DLR and JAXA will work together on the MMX mission to explore the Martian moons, Phobos and Deimos. In addition, Germany and Japan make extensive use of the International Space Station (ISS) to address questions in the fields of medicine, materials development and basic research.

URL查看原文
来源平台German Aerosapce Center
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/302903
专题地球科学
推荐引用方式
GB/T 7714
admin. DES­TINY+ – Ger­many and Japan be­gin new as­ter­oid mis­sion. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。