GSTDTAP  > 气候变化
New green materials could power smart devices using ambient light
admin
2020-11-13
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)

We are increasingly using more smart devices like smartphones, smart speakers, and wearable health and wellness sensors in our homes, offices, and public buildings. However, the batteries they use can deplete quickly and contain toxic and rare environmentally damaging chemicals, so researchers are looking for better ways to power the devices.

One way to power them is by converting indoor light from ordinary bulbs into energy, in a similar way to how solar panels harvest energy from sunlight, known as solar photovoltaics. However, due to the different properties of the light sources, the materials used for solar panels are not suitable for harvesting indoor light.

Now, researchers from Imperial College London, Soochow University in China, and the University of Cambridge have discovered that new green materials currently being developed for next-generation solar panels could be useful for indoor light harvesting. They report their findings today in Advanced Energy Materials.

Co-author Dr Robert Hoye, from the Department of Materials at Imperial, said: "By efficiently absorbing the light coming from lamps commonly found in homes and buildings, the materials we investigated can turn light into electricity with an efficiency already in the range of commercial technologies. We have also already identified several possible improvements, which would allow these materials to surpass the performance of current indoor photovoltaic technologies in the near future."

The team investigated 'perovskite-inspired materials', which were created to circumvent problems with materials called perovskites, which were developed for next-generation solar cells. Although perovskites are cheaper to make than traditional silicon-based solar panels and deliver similar efficiency, perovskites contain toxic lead substances. This drove the development of perovskite-inspired materials, which are instead based on safer elements like bismuth and antimony.

Despite being more environmentally friendly, these perovskite-inspired materials are not as efficient at absorbing sunlight. However, the team found that the materials are much more effective at absorbing indoor light, with efficiencies that are promising for commercial applications. Crucially, the researchers demonstrated that the power provided by these materials under indoor illumination is already sufficient to operate electronic circuits.

Co-author Professor Vincenzo Pecunia, from Soochow University, said: "Our discovery opens up a whole new direction in the search for green, easy-to-make materials to sustainably power our smart devices.

"In addition to their eco-friendly nature, these materials could potentially be processed onto unconventional substrates such as plastics and fabric, which are incompatible with conventional technologies. Therefore, lead-free perovskite-inspired materials could soon enable battery-free devices for wearables, healthcare monitoring, smart homes, and smart cities."

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/302669
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. New green materials could power smart devices using ambient light. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。