GSTDTAP  > 气候变化
DOI10.1126/science.abd3831
Lubricating lipids in hydrogels
Tannin A. Schmidt
2020-10-16
发表期刊Science
出版年2020
英文摘要Hydrogels are hydrophilic polymer chain networks that can absorb large quantities of water or biological fluids. In many of their biomedical and other applications ([ 1 ][1]), hydrogels slide against another surface and must be well lubricated. Hydrogel lubrication is normally provided by fluid interfacial layers ([ 2 ][2]), but the long-lasting lubrication of articular cartilage in our joints ([ 3 ][3]–[ 5 ][4]) is partially the result of nonfluid, highly hydrated head groups of exposed phosphatidylcholine lipids ([ 6 ][5]). On page 335 of this issue, Lin et al. ([ 7 ][6]) mimic and modify this mechanism in various synthetic hydrogels by incorporating small concentrations of lipids to create a self-renewing, molecularly thin lipid-based boundary layer. The results are striking, with substantial reduction of friction (and wear) observed by as much as a factor of 100 relative to lipid-free hydrogels. Moreover, the effect remained even when gels were dried and rehydrated. Articular cartilage is the lubricious, load-bearing tissue at the end of long bones in synovial joints that facilitates both low-friction and low-wear articulation. Although the low friction of cartilage is attributed in large part to fluid pressurization that can bear a substantial fraction of the load, lubricant molecules also play an important role in mediating friction, especially with surface-to-surface contact in the boundary mode of lubrication. Synovial fluid constituents, which include hyaluronan, lubricin, and surface-active phospholipids, all can and do contribute to the boundary lubrication of cartilage. Indeed, their independent and synergistic function has been an active area of research and discussion ([ 3 ][3], [ 8 ][7]–[ 11 ][8]). Although these molecules have been studied in the context of hydrogel lubrication in the past, Lin et al. found that embedding lipids in microreservoirs within hydrogels creates a material with self-renewing boundary lubrication. ![Figure][9] Cartilage-inspired, lipid-based boundary-lubricated hydrogels Liu et al. incorporated small concentrations of lipids to create a self-renewing, molecularly thin lipid-based boundary layer. This discovery has potential applications in numerous fields relevant to biology and medicine. GRAPHIC: KELLIE HOLOSKI/ SCIENCE Biotribology is the study of lubrication, friction, and wear when applied to biological systems or natural phenomena ([ 12 ][10]). Friction coefficients are systems variables that depend on test variables, surfaces, and geometries. With that dependence in mind, Lin et al. provide compelling data demonstrating the robust and effective lipid-based boundary lubrication in their hydrogels. They examined a number of different hydrogels, both biological and synthetic polymers [some quite different from the commonly used poly(hydroxyethylmethacrylate), pHEMA], and showed effective reduction of friction with the lipid incorporation. They also tested different test countersurfaces other than steel and again found effective friction reduction. Finally, they examined a wide range of sliding velocities (more than three orders of magnitude). A near-constant friction coefficient provided evidence that boundary-mode lubrication is operative. This last result highlights the importance of incorporating lipids into a hydrogel to provide self-renewing boundary lubrication. The authors further demonstrate that sliding is the driving mechanism for lipid-layer formation on the gel surface from the microreservoirs of lipid vesicles, and that the self-renewal of this boundary lubricating layer occurs as the hydrogel wears (ever so slightly) under friction (see the figure). Moreover, lubrication by external application of lipids, either through soaking and washing hydrogels or by their presence in solution, is far less effective than when the lipids are bulk-incorporated. Lipids from the surrounding solution had poorer access to the gel/countersurface interface relative to those incorporated into vesicles. Also, the incorporation of lipid vesicles did not alter the mechanical properties of the hydrogel, which may be relevant in various applications. Additionally, the concentration of incorporated lipids could be altered, which allowed tuning of the lubricating ability and duration of the hydrogels. A potential critical consideration regarding the utility of these hydrogels is that wear is required for these hydrogels to function in their self-renewing manner. Although the authors demonstrate that this wear is minimal and that the materials can sustain many cycles, this parameter could affect longevity and would need to be taken into consideration for different applications. Finally, one amazing feature of these hydrogels that could potentially open up many applications is that they retain their self-sustaining lubrication even after being fully dried in an oven to 60°C and rehydrated. Indeed, this robust property has implications for storage of hydrogels and potentially for their utility in harsh conditions that would not be possible for many other materials. Lin et al. have demonstrated a simple yet effective way of creating self-lubricating hydrogels through incorporation of lipids, with minimal effect on the bulk mechanical properties. These materials may be useful in biomedical applications where sustained and extreme friction and wear would occur, as well as various applications of tissue engineering ([ 13 ][11]), biosensors, or even contact lenses. Given that hyaluronan and lubricin were initially studied as simple lubricants but were eventually examined more for their biological properties ([ 14 ][12], [ 15 ][13]), these hydrogels could serve in more complex biological functions beyond pure lubrication, such as drug delivery devices, anti-inflammatories, or immune-response modulators. Indeed, this discovery has potential application in numerous fields relevant to biology and medicine, and it will be of great interest to see where future research and applications lead. 1. [↵][14]1. N. A. Peppas, 2. J. Z. Hilt, 3. A. Khademhosseini, 4. R. Langer , Adv. Mater. 18, 1345 (2006). [OpenUrl][15] 2. [↵][16]1. J. P. Gong , Soft Matter 2, 544 (2006). [OpenUrl][17][CrossRef][18][PubMed][19][Web of Science][20] 3. [↵][21]1. J. Seror, 2. L. Zhu, 3. R. Goldberg, 4. A. J. Day, 5. J. Klein , Nat. Commun. 6, 6497 (2015). [OpenUrl][22][CrossRef][23][PubMed][24] 4. 1. G. D. Jay, 2. K. A. Waller , Matrix Biol. 39, 17 (2014). [OpenUrl][25][CrossRef][26] 5. [↵][27]1. A. Singh et al ., Nat. Mater. 13, 988 (2014). [OpenUrl][28][CrossRef][29][PubMed][30] 6. [↵][31]1. W. H. Briscoe et al ., Nature 444, 191 (2006). [OpenUrl][32][CrossRef][33][PubMed][34][Web of Science][35] 7. [↵][36]1. W. Lin et al ., Science 370, 335 (2020). [OpenUrl][37][CrossRef][38] 8. [↵][39]1. E. L. Radin, 2. D. A. Swann, 3. P. A. Weisser , Nature 228, 377 (1970). [OpenUrl][40][CrossRef][41][PubMed][42][Web of Science][43] 9. 1. G. D. Jay , Connect. Tissue Res. 28, 71 (1992). [OpenUrl][44][CrossRef][45][PubMed][46][Web of Science][47] 10. 1. T. A. Schmidt, 2. N. S. Gastelum, 3. Q. T. Nguyen, 4. B. L. Schumacher, 5. R. L. Sah , Arthritis Rheum. 56, 882 (2007). [OpenUrl][48][CrossRef][49][PubMed][50][Web of Science][51] 11. [↵][52]1. E. D. Bonnevie, 2. D. Galesso, 3. C. Secchieri, 4. I. Cohen, 5. L. J. Bonassar , PLOS ONE 10, e0143415 (2015). [OpenUrl][53] 12. [↵][54]1. D. Dowson , Proc. Inst. Mech. Eng. 184, 181 (1968). [OpenUrl][55] 13. [↵][56]1. A. Khademhosseini, 2. R. Langer , Biomaterials 28, 5087 (2007). [OpenUrl][57][CrossRef][58][PubMed][59][Web of Science][60] 14. [↵][61]1. A. C. Petrey, 2. C. A. de la Motte , Front. Immunol. 5, 101 (2014). [OpenUrl][62][CrossRef][63][PubMed][64] 15. [↵][65]1. N. Das, 2. T. A. Schmidt, 3. R. J. Krawetz, 4. A. Dufour , BioEssays 41, 1800166 (2019). [OpenUrl][66] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-5 [5]: #ref-6 [6]: #ref-7 [7]: #ref-8 [8]: #ref-11 [9]: pending:yes [10]: #ref-12 [11]: #ref-13 [12]: #ref-14 [13]: #ref-15 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DAdv.%2BMater.%26rft.volume%253D18%26rft.spage%253D1345%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: #xref-ref-2-1 "View reference 2 in text" [17]: {openurl}?query=rft.jtitle%253DSoft%2BMatter%26rft.volume%253D2%26rft.spage%253D544%26rft.atitle%253DSOFT%2BMATTER%26rft_id%253Dinfo%253Adoi%252F10.1039%252Fb603209p%26rft_id%253Dinfo%253Apmid%252F32680232%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: /lookup/external-ref?access_num=10.1039/b603209p&link_type=DOI [19]: /lookup/external-ref?access_num=32680232&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [20]: /lookup/external-ref?access_num=000240312300002&link_type=ISI [21]: #xref-ref-3-1 "View reference 3 in text" [22]: {openurl}?query=rft.jtitle%253DNat.%2BCommun.%26rft.volume%253D6%26rft.spage%253D6497%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fncomms7497%26rft_id%253Dinfo%253Apmid%252F25754223%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: /lookup/external-ref?access_num=10.1038/ncomms7497&link_type=DOI [24]: /lookup/external-ref?access_num=25754223&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [25]: {openurl}?query=rft.jtitle%253DMatrix%2BBiol.%26rft.volume%253D39%26rft.spage%253D17%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.matbio.2014.08.008%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/external-ref?access_num=10.1016/j.matbio.2014.08.008&link_type=DOI [27]: #xref-ref-5-1 "View reference 5 in text" [28]: {openurl}?query=rft.jtitle%253DNat.%2BMater.%26rft.volume%253D13%26rft.spage%253D988%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnmat4048%26rft_id%253Dinfo%253Apmid%252F25087069%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/external-ref?access_num=10.1038/nmat4048&link_type=DOI [30]: /lookup/external-ref?access_num=25087069&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [31]: #xref-ref-6-1 "View reference 6 in text" [32]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DBriscoe%26rft.auinit1%253DW.%2BH.%26rft.volume%253D444%26rft.issue%253D7116%26rft.spage%253D191%26rft.epage%253D194%26rft.atitle%253DBoundary%2Blubrication%2Bunder%2Bwater.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature05196%26rft_id%253Dinfo%253Apmid%252F17093447%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [33]: /lookup/external-ref?access_num=10.1038/nature05196&link_type=DOI [34]: /lookup/external-ref?access_num=17093447&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [35]: /lookup/external-ref?access_num=000241867200037&link_type=ISI [36]: #xref-ref-7-1 "View reference 7 in text" [37]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DLin%26rft.auinit1%253DW.%26rft.volume%253D370%26rft.issue%253D6514%26rft.spage%253D335%26rft.epage%253D338%26rft.atitle%253DCartilage-inspired%252C%2Blipid-based%2Bboundary-lubricated%2Bhydrogels%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aay8276%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: /lookup/external-ref?access_num=10.1126/science.aay8276&link_type=DOI [39]: #xref-ref-8-1 "View reference 8 in text" [40]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DRadin%26rft.auinit1%253DE.%2BL.%26rft.volume%253D228%26rft.issue%253D5269%26rft.spage%253D377%26rft.epage%253D378%26rft.atitle%253DSeparation%2Bof%2Ba%2Bhyaluronate-free%2Blubricating%2Bfraction%2Bfrom%2Bsynovial%2Bfluid.%26rft_id%253Dinfo%253Adoi%252F10.1038%252F228377a0%26rft_id%253Dinfo%253Apmid%252F5473985%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [41]: /lookup/external-ref?access_num=10.1038/228377a0&link_type=DOI [42]: /lookup/external-ref?access_num=5473985&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [43]: /lookup/external-ref?access_num=A1970H564600058&link_type=ISI [44]: {openurl}?query=rft.jtitle%253DConnective%2Btissue%2Bresearch%26rft.stitle%253DConnect%2BTissue%2BRes%26rft.aulast%253DJay%26rft.auinit1%253DG.%2BD.%26rft.volume%253D28%26rft.issue%253D1-2%26rft.spage%253D71%26rft.epage%253D88%26rft.atitle%253DCharacterization%2Bof%2Ba%2Bbovine%2Bsynovial%2Bfluid%2Blubricating%2Bfactor.%2BI.%2BChemical%252C%2Bsurface%2Bactivity%2Band%2Blubricating%2Bproperties.%26rft_id%253Dinfo%253Adoi%252F10.3109%252F03008209209014228%26rft_id%253Dinfo%253Apmid%252F1628491%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [45]: /lookup/external-ref?access_num=10.3109/03008209209014228&link_type=DOI [46]: /lookup/external-ref?access_num=1628491&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [47]: /lookup/external-ref?access_num=A1992HV38600005&link_type=ISI [48]: {openurl}?query=rft.jtitle%253DArthritis%2Band%2Brheumatism%26rft.stitle%253DArthritis%2BRheum%26rft.aulast%253DSchmidt%26rft.auinit1%253DT.%2BA.%26rft.volume%253D56%26rft.issue%253D3%26rft.spage%253D882%26rft.epage%253D891%26rft.atitle%253DBoundary%2Blubrication%2Bof%2Barticular%2Bcartilage%253A%2Brole%2Bof%2Bsynovial%2Bfluid%2Bconstituents.%26rft_id%253Dinfo%253Adoi%252F10.1002%252Fart.22446%26rft_id%253Dinfo%253Apmid%252F17328061%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [49]: /lookup/external-ref?access_num=10.1002/art.22446&link_type=DOI [50]: /lookup/external-ref?access_num=17328061&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [51]: /lookup/external-ref?access_num=000244829400024&link_type=ISI [52]: #xref-ref-11-1 "View reference 11 in text" [53]: {openurl}?query=rft.jtitle%253DPLOS%2BONE%26rft.volume%253D10%26rft.spage%253De0143415%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [54]: #xref-ref-12-1 "View reference 12 in text" [55]: {openurl}?query=rft.jtitle%253DProc.%2BInst.%2BMech.%2BEng.%26rft.volume%253D184%26rft.spage%253D181%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [56]: #xref-ref-13-1 "View reference 13 in text" [57]: {openurl}?query=rft.jtitle%253DBiomaterials%26rft.stitle%253DBiomaterials%26rft.aulast%253DKhademhosseini%26rft.auinit1%253DA.%26rft.volume%253D28%26rft.issue%253D34%26rft.spage%253D5087%26rft.epage%253D5092%26rft.atitle%253DMicroengineered%2Bhydrogels%2Bfor%2Btissue%2Bengineering.%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.biomaterials.2007.07.021%26rft_id%253Dinfo%253Apmid%252F17707502%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [58]: /lookup/external-ref?access_num=10.1016/j.biomaterials.2007.07.021&link_type=DOI [59]: /lookup/external-ref?access_num=17707502&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [60]: /lookup/external-ref?access_num=000250663100012&link_type=ISI [61]: #xref-ref-14-1 "View reference 14 in text" [62]: {openurl}?query=rft.jtitle%253DFront.%2BImmunol.%26rft.volume%253D5%26rft.spage%253D101%26rft_id%253Dinfo%253Adoi%252F10.3389%252Ffimmu.2014.00101%26rft_id%253Dinfo%253Apmid%252F24653726%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [63]: /lookup/external-ref?access_num=10.3389/fimmu.2014.00101&link_type=DOI [64]: /lookup/external-ref?access_num=24653726&link_type=MED&atom=%2Fsci%2F370%2F6514%2F288.atom [65]: #xref-ref-15-1 "View reference 15 in text" [66]: {openurl}?query=rft.jtitle%253DBioEssays%26rft.volume%253D41%26rft.spage%253D1800166%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/299327
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Tannin A. Schmidt. Lubricating lipids in hydrogels[J]. Science,2020.
APA Tannin A. Schmidt.(2020).Lubricating lipids in hydrogels.Science.
MLA Tannin A. Schmidt."Lubricating lipids in hydrogels".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tannin A. Schmidt]的文章
百度学术
百度学术中相似的文章
[Tannin A. Schmidt]的文章
必应学术
必应学术中相似的文章
[Tannin A. Schmidt]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。