GSTDTAP  > 气候变化
New dimensions in the treatment of muscle spasticity after stroke and nervous system defects
admin
2020-10-16
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)

First-in-class antispastic drug candidate to reach clinical phase is published in the prestigious life science journal, Cell. Drug candidate MPH-220 could mean new hope for millions of patients suffering from spasticity.

Chronic muscle spasticity after nervous system defects like stroke, traumatic brain and spinal cord injury, multiple sclerosis and painful low back pain affect more than 10% of the population, with a socioeconomic cost of about 500 billion USD. Currently, there is no satisfying remedy to help these suffering people, which generates an immense medical need for a new generation antispastic drug.

András Málnási-Csizmadia, co-founder of Motorpharma Ltd. and professor at Eötvös Loránd University in Hungary leads the development of a first-in-class drug candidate co-sponsored by Printnet Ltd. MPH-220 directly targets and inhibits the effector protein of muscle contraction, potentially by taking one pill per day. By contrast, current treatments have low efficacy and cause a wide range of side effects because they act indirectly, through the nervous system.

"We receive desperate emails from stroke survivors, who suffer from the excruciating symptoms of spasticity, asking if they could participate in our research. We work hard to accelerate the development of MPH-220 to alleviate these people's chronic spasticity" - said Prof. András Málnási-Csizmadia.

The mechanism of action of MPH-220 and preclinical studies are recently published in Cell. Dr. Máté Gyimesi, CSO of Motorpharma Ltd. highlighted: "The scientific challenge was to develop a chemical compound which discriminates between skeletal and cardiac muscle myosins, the motor proteins of these contractile systems. This feature of MPH-220 makes it highly specific and safe."

Prof. James Spudich, co-founder of Cytokinetics, MyoKardia and Kainomyx, all companies developing drugs targeting cytoskeletal components, is also very excited about MPH-220 as a possible next generation muscle relaxant. "Cytokinetics and MyoKardia have shown that cardiac myosin is highly druggable, and both companies have potential drugs acting on cardiac myosin in late phase clinical trials. Skeletal myosin effectors, however, have not been reported. Motorpharma Ltd. has now developed a specific inhibitor of skeletal myosin, MPH-220, a drug candidate that may reduce the everyday painful spasticity for about 10% of the population that suffers from low back pain and neurological injury related diseases"- said Professor Spudich, former chair of Stanford medical school's Biochemistry department, a Lasker awardee.

Drug development specifically targeting myosins is becoming a distinguished area, indicated by last week's acquisition of MyoKardia by Bristol-Myers Squibb Co. for 13.1 billion dollars in an all-cash deal, in the hope of marketing their experimental heart drug targeting cardiac myosin. This business activity shows the demand for start-up biotech companies such as Myokardia or Motorpharma.

"Motorpharma focusing on muscle research is ready to offer an antispastic drug candidate, MPH-220 with a new mechanism of action. The treatment of spasticity is an unmet need causing huge burden in diseases like poststroke conditions or chronic low back pain" said Prof. Istvan Bitter, former head of CNS in a regional hub of Eli Lilly Co.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/298895
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. New dimensions in the treatment of muscle spasticity after stroke and nervous system defects. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。