GSTDTAP  > 气候变化
Ultra-fast magnetic switching with potential to transform fibre optical communications
admin
2020-09-15
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Researchers at CRANN and Trinity College Dublin's School of Physics have discovered that a new material can act as a super-fast magnetic switch. view more 

Credit: CRANN, and Trinity College Dublin.

Researchers at CRANN and the School of Physics at Trinity College Dublin have discovered that a new material can act as a super-fast magnetic switch. When struck by successive ultra-short laser pulses it exhibits "toggle switching" that could increase the capacity of the global fibre optic cable network by an order of magnitude.

Expanding the capacity of the internet

Switching between two states - 0 and 1 - is the basis of digital technology and the backbone of the internet. The vast majority of all the data we download is stored magnetically in huge data centres across the world, linked by a network of optical fibres.

Obstacles to further progress with the internet are three-fold, specifically the speed and energy consumption of the semiconducting or magnetic switches that process and store our data and the capacity of the fibre optic network to handle it.

The new discovery of ultra-fast toggle switching using laser light on mirror-like films of an alloy of manganese, ruthenium and gallium known as MRG could help with all three problems.

Not only does light offer a great advantage when it comes to speed but magnetic switches need no power to maintain their state. More importantly, they now offer the prospect of rapid time-domain multiplexing of the existing fibre network, which could enable it to handle ten times as much data.

The science behind magnetic switching

Working in the photonics laboratory at CRANN, Trinity's nanoscience research centre, Dr Chandrima Banerjee and Dr Jean Besbas used ultra-fast laser pulses lasting just a hundred femtoseconds (one ten thousand billionth of a second) to switch the magnetisation of thin films of MRG back and forth. The direction of magnetisation can point either in or out of the film.

With every successive laser pulse, it abruptly flips its direction. Each pulse is thought to momentarily heat the electrons in MRG by about 1,000 degrees, which leads to a flip of its magnetisation. The discovery of ultra-fast toggle switching of MRG has just been published in leading international journal, Nature Communications.

Dr Karsten Rode, Senior Research Fellow in the 'Magnetism and Spin Electronics Group' in Trinity's School of Physics, suggests that the discovery just marks the beginning of an exciting new research direction. Dr Rode said:

"We have a lot of work to do to fully understand the behaviour of the atoms and electrons in a solid that is far from equilibrium on a femtosecond timescale. In particular, how can magnetism change so quickly while obeying the fundamental law of physics that says that angular momentum must be conserved?

"In the spirit of our spintronics team, we will now gather data from new pulsed-laser experiments on MRG, and other materials, to better understand these dynamics and link the ultra-fast optical response with electronic transport. We plan experiments with ultra-fast electronic pulses to test the hypothesis that the origin of the toggle switching is purely thermal."

Next year Chandrima will continue her work at the University of Haifa, Israel, with a group who can generate even shorter laser pulses. The Trinity researchers, led by Karsten, plan a new joint project with collaborators in the Netherlands, France, Norway and Switzerland, aimed at proving the concept of ultra-fast, time-domain multiplexing of fibre-optic channels.

###

The work that made the discovery possible was supported by Science Foundation Ireland, the Irish Research Council and the European Commission.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/294589
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Ultra-fast magnetic switching with potential to transform fibre optical communications. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。