GSTDTAP  > 地球科学
DOI10.5194/acp-18-12289-2018
Identification of topographic features influencing aerosol observations at high altitude stations
Coen, Martine Collaud1; Andrews, Elisabeth2,3; Aliaga, Diego4; Andrade, Marcos4; Angelov, Hristo5; Bukowiecki, Nicolas6; Ealo, Marina7; Fialho, Paulo8; Flentje, Harald9; Hallar, A. Gannet10,11; Hooda, Rakesh12,13; Kalapov, Ivo5; Krejci, Radovan14; Lin, Neng-Huei15; Marinoni, Angela16; Ming, Jing17,27; Nhat Anh Nguyen18; Pandolfi, Marco7; Pont, Veronique19; Ries, Ludwig20; Rodriguez, Sergio21; Schauer, Gerhard22; Sellegri, Karine23; Sharma, Sangeeta24; Sun, Junying25; Tunved, Peter14; Velasquez, Patricio26; Ruffieux, Dominique1
2018-08-24
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2018
卷号18期号:16页码:12289-12313
文章类型Article
语种英语
国家Switzerland; USA; Bolivia; Bulgaria; Spain; Portugal; Germany; Finland; India; Sweden; Taiwan; Italy; Vietnam; France; Austria; Canada; Peoples R China
英文摘要

High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer (ABL) air masses due to convective transport processes. The local and meso-scale topographical features around the station are involved in the convective boundary layer development and in the formation of thermally induced winds leading to ABL air lifting. The station altitude alone is not a sufficient parameter to characterize the ABL influence. In this study, a topography analysis is performed allowing calculation of a newly defined index called ABL-TopoIndex. The ABL-TopoIndex is constructed in order to correlate with the ABL influence at the high altitude stations and long-term aerosol time series are used to assess its validity. Topography data from the global digital elevation model GTopo30 were used to calculate five parameters for 43 high and 3 middle altitude stations situated on five continents. The geometric mean of these five parameters determines a topography based index called ABL-TopoIndex, which can be used to rank the high altitude stations as a function of the ABL influence. To construct the ABL-TopoIndex, we rely on the criteria that the ABL influence will be low if the station is one of the highest points in the mountainous massif, if there is a large altitude difference between the station and the valleys or high plains, if the slopes around the station are steep, and finally if the inverse drainage basin potentially reflecting the source area for thermally lifted pollutants to reach the site is small. All stations on volcanic islands exhibit a low ABL-TopoIndex, whereas stations in the Himalayas and the Tibetan Plateau have high ABL-TopoIndex values. Spearman's rank correlation between aerosol optical properties and number concentration from 28 stations and the ABL-TopoIndex, the altitude and the latitude are used to validate this topographical approach. Statistically significant (SS) correlations are found between the 5th and 50th percentiles of all aerosol parameters and the ABL-TopoIndex, whereas no SS correlation is found with the station altitude. The diurnal cycles of aerosol parameters seem to be best explained by the station latitude although a SS correlation is found between the amplitude of the diurnal cycles of the absorption coefficient and the ABL-TopoIndex.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000442577800004
WOS关键词SUBTROPICAL NORTH-ATLANTIC ; CONVECTIVE BOUNDARY-LAYER ; LOWER FREE TROPOSPHERE ; IN-SITU MEASUREMENTS ; WESTERN MEDITERRANEAN BASIN ; MONTSEC SOUTHERN PYRENEES ; LONG-RANGE TRANSPORT ; AIR-MASS TRANSPORT ; 1570 M A.S.L. ; PARTICLE FORMATION
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/29444
专题地球科学
作者单位1.MeteoSwiss, Fed Off Meteorol & Climatol, CH-1530 Payerne, Switzerland;
2.Univ Colorado, CIRES, Boulder, CO 80305 USA;
3.Natl Ocean & Atmospher Adm, Earth Syst Res Lab, Boulder, CO 80305 USA;
4.Univ Mayor San Andres, Inst Phys Res, Lab Atmospher Phys, Campus Univ Cota Cota Calle 27, La Paz, Bolivia;
5.Inst Nucl Energy Res, Sofia 1784, Bulgaria;
6.Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland;
7.Inst Environm Assessment & Water Res, C Jordi Girona 18-26, Barcelona 08034, Spain;
8.Inst Invest Vulcanol & Avaliacao Riscos IVAR, Rua Mae Deus, P-9500321 Ponta Delgada, Portugal;
9.Deutscher Wetterdienst, Met Obs Hohenpeissenberg, D-82383 Hohenpeissenberg, Germany;
10.Univ Utah, Dept Atmospher Sci, Salt Lake City, UT USA;
11.Desert Res Inst, Storm Peak Lab, Steamboat Springs, CO USA;
12.Finnish Meteorol Inst, POB 503, FIN-00101 Helsinki, Finland;
13.IHC, Energy & Resources Inst, Lodhi Rd, New Delhi 110003, India;
14.Dept Environm Sci & Analyt Chem ACES, Atmospher Sci Unit, S-10691 Stockholm, Sweden;
15.Natl Cent Univ, Dept Atmospher Sci, Taoyuan, Taiwan;
16.Natl Res Council Italy, Inst Atmospher Sci & Climate, I-40129 Bologna, Italy;
17.Max Planck Inst Chem, D-55128 Mainz, Germany;
18.NHMS, Hydrometeorol & Environm Stn Network Ctr HYMENET, Hanoi, Vietnam;
19.Univ Toulouse III, Lab Aerol, UMR 5560, F-31400 Toulouse, France;
20.German Environm Agcy, GAW Global Observ Zugspitze Schneefernerhaus, Platform Zugspitze, Zugspitze 5, D-82475 Zugspitze, Germany;
21.Izana Atmospher Res Ctr, Joint Res Unit CSIC Studies Atmospher Pollut, AEMET, Santa Cruz De Tenerife, Spain;
22.Sonnblick Observ, Zentralanstalt Meteorol & Geodynam ZAMG, A-5020 Salzburg, Austria;
23.Univ Blaise Pascal, Lab Meteorol Phys, UMR 6016, F-63170 Aubiere, France;
24.Environm & Climate Change Canada, Climate Res Div, Climate Chem Measurements Res, 4905 Dufferin St, Toronto, ON M3H 5T4, Canada;
25.Chinese Acad Meteorol Sci, Key Lab Atmospher Chem CMA, Beijing 100081, Peoples R China;
26.Univ Bern, Phys Inst, Climate & Environm Phys, Bern, Switzerland;
27.Chinese Acad Sci, State Key Lab Cryospher Sci, Lanzhou 730000, Gansu, Peoples R China
推荐引用方式
GB/T 7714
Coen, Martine Collaud,Andrews, Elisabeth,Aliaga, Diego,et al. Identification of topographic features influencing aerosol observations at high altitude stations[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(16):12289-12313.
APA Coen, Martine Collaud.,Andrews, Elisabeth.,Aliaga, Diego.,Andrade, Marcos.,Angelov, Hristo.,...&Ruffieux, Dominique.(2018).Identification of topographic features influencing aerosol observations at high altitude stations.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(16),12289-12313.
MLA Coen, Martine Collaud,et al."Identification of topographic features influencing aerosol observations at high altitude stations".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.16(2018):12289-12313.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Coen, Martine Collaud]的文章
[Andrews, Elisabeth]的文章
[Aliaga, Diego]的文章
百度学术
百度学术中相似的文章
[Coen, Martine Collaud]的文章
[Andrews, Elisabeth]的文章
[Aliaga, Diego]的文章
必应学术
必应学术中相似的文章
[Coen, Martine Collaud]的文章
[Andrews, Elisabeth]的文章
[Aliaga, Diego]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。