GSTDTAP  > 气候变化
DOI10.1126/science.abd8183
Reactive polymers guide nanoparticle clustering
Oleg Gang
2020-09-11
发表期刊Science
出版年2020
英文摘要From the early days of nanoparticle synthesis, researchers understood the need for adaptable methods that coordinated particles in clusters with precise nanoarchitecture. The similarity between the building of nanoscale clusters from particles and the formation of molecules from atoms goes beyond a structural analogy. As with molecules, which demonstrate properties not found in atoms, clusters exhibit synergistic functional responses beyond the properties of individual nanoparticles ([ 1 ][1]–[ 3 ][2]). For atomic systems, the formation of molecules is rationalized by orbital hybridization principles. Because this concept is not suitable for nanoparticles, scientists have explored other particle-assembly methods. On page 1369 of this issue, Yi et al. ([ 4 ][3]) describe a high-yield method for the assembly of targeted nanoparticle clusters. ![Figure][4] Polymers guide cluster design Nanoparticle A is grafted with charged copolymers (red lines) bearing a block of acidic groups; B is grafted with neutral copolymers (blue lines) bearing a block of basic groups. GRAPHIC: A. KITTERMAN/ SCIENCE Although a variety of methods exist for building nanoparticle clusters, they all follow a similar set of main concepts. In the first approach (called “packing”), possible mutual arrangements of attractive micronsized particles determine the formation of specific clusters ([ 5 ][5]). Although a similar approach can be applied at the nanoscale, nanoparticles typically exhibit more complex interactions caused by the ligand shell grafted to their surface and the contribution of electrostatic, van der Waals, and other forces. For spherical nanoparticles, the ligand shell might modify the cluster structure expected for hard spheres, but the isotropic nature of interactions typically is preserved. Thus, a similar, albeit modified, “packing” concept still applies, however, the realization is often challenging. For nanoparticles with multiligand shells and complex interparticle interactions, intricate organizations might occur, but control over the resulting structures is limited. The central idea of this anisotropic binding concept is to mimic atomic valence by establishing specifically located affinity patches on particles, forming so-called “patchy particles.” This idea has been intensively investigated theoretically ([ 6 ][6]), and several implementations have been demonstrated for micron-sized particles ([ 7 ][7], [ 8 ][8]). Because this fabrication approach is limited to larger particles, a different strategy—molecular patterning—was used to create patchy nanoscale particles ([ 9 ][9], [ 10 ][10]). This third concept provides the highest degree of control over cluster formation by using an underlying molecular ([ 2 ][11], [ 3 ][2], [ 11 ][12]) or nano-object ([ 12 ][13]) scaffold that prescribes the position of each nanoparticle and coordinates them in a targeted cluster. Thus, the spectrum of cluster-assembly methods ranges from a packing-based strategy with minimal particle engineering, to more elaborate patchy-particle strategies with designed particle-based directional interactions, to fully prescribed scaffold-based clusters. Among these diverse methods, none mimics a special aspect of interatomic bonds: Valence electrons, although delocalized within each atom, still support formation of well-defined molecules through directional bonds. The new nanoparticle assembly strategy of Yi et al. resembles the “delocalized” feature of atomic systems. It relies on polymer-mediated reactions and interactions to regulate binding between two types of gold spherical nanoparticles (A and B) (see the figure). To form polymeric shells, the authors grafted two kinds of block copolymers containing either acid (a) or base (b) groups to the surfaces of these particles. The copolymer design allowed for control over the number and arrangement of reactive groups and inclusion of a chain portion on the outer part of the shells, so as to tailor steric repulsion between the shells or enable hydrophobic or hydrophilic interactions. A neutralization reaction between the acid groups of the charged copolymers on one particle and base groups of neutral copolymers on the other particle drove the attractive interparticle interactions. Controlling the number of acid and base groups within grafted chains and the number of chains per particle allowed regulation of the ratio ( Z a/b) between acid and base groups. In this approach, Z a/b represents an effective valence for AB binding (see the figure). A neutralization reaction should progress until all the acid and base groups are reacted. This might require a specific reaction stoichiometry between particles A and B, which should be satisfied in the formation of an AB x cluster. Yi et al. experimentally observed a direct correspondence between Z a/b and x . The polymeric properties of the interacting shells proved critical for realization of the “delocalized” concept. The polymeric chains formed a weakly localized “cloud” of acid and base groups within the shell of each particle, which resembled delocalized electrons in atomic orbitals. After neutralization, polymer chains adopted confirmations that permitted acid and base groups to reorganize and react to the fullest extent possible. Thus, the number of B particles that reacted with A particles was fully determined by the Z a/b. Moreover, given the steric repulsion between the particles and the Coulombic repulsion between the charged polymers in the bonds, the resulting nanoparticle clusters accommodated a spatial configuration that possessed equal angles between the B particles, thus leading to the demonstrated directional binding. The system also exhibited a self-limiting mechanism for cluster assembly, because the resulting reorganization of the grafted chains depleted the base groups in the outer hemisphere of B particles (see the figure). Electrostatic repulsion by the charged copolymers further reduced clustering beyond the designated stoichiometry. Given the large variety of copolymer structures, this new methodology offers the ability to assemble with ease a desired class of nanoparticle architectures. Further, by making use of copolymer motifs with hydrophobic and hydrophilic shells, the clusters can be hierarchically assembled into more complex organizations, possibly permitting the creation of highly engineered nanoparticle-based materials. 1. [↵][14]1. J. A. Fan et al ., Science 328, 1135 (2010). [OpenUrl][15][Abstract/FREE Full Text][16] 2. [↵][17]1. R. Schreiber et al ., Nat. Commun. 4, 2948 (2013). [OpenUrl][18] 3. [↵][19]1. H. Zhang et al ., ACS Nano 14, 1369 (2020). [OpenUrl][20] 4. [↵][21]1. C. Yi et al ., Science 369, 1369 (2020). [OpenUrl][22][Abstract/FREE Full Text][23] 5. [↵][24]1. G. Meng, 2. N. Arkus, 3. M. P. Brenner, 4. V. N. Manoharan , Science 327, 560 (2010). [OpenUrl][25][Abstract/FREE Full Text][26] 6. [↵][27]1. F. Romano, 2. E. Sanz, 3. P. Tartaglia, 4. F. Sciortino , J. Condens. Matter Phys. 24, 064113 (2012). [OpenUrl][28] 7. [↵][29]1. Q. Chen, 2. S. C. Bae, 3. S. Granick , Nature 469, 381 (2011). [OpenUrl][30][CrossRef][31][PubMed][32][Web of Science][33] 8. [↵][34]1. Z. Gong, 2. T. Hueckel, 3. G.-R. Yi, 4. S. Sacanna , Nature 550, 234 (2017). [OpenUrl][35][CrossRef][36][PubMed][37] 9. [↵][38]1. T. G. W. Edwardson, 2. K. L. Lau, 3. D. Bousmail, 4. C. J. Serpell, 5. H. F. Sleiman , Nat. Chem. 8, 162 (2016). [OpenUrl][39][CrossRef][40][PubMed][41] 10. [↵][42]1. Y. Xiong et al ., ACS Nano 14, 6823 (2020). [OpenUrl][43] 11. [↵][44]1. S. Sun et al ., Nat. Commun. 11, 2279 (2020). [OpenUrl][45] 12. [↵][46]1. F. Lu, 2. K. G. Yager, 3. Y. Zhang, 4. H. Xin, 5. O. Gang , Nat. Commun. 6, 6912 (2015). [OpenUrl][47][CrossRef][48][PubMed][49] Acknowledgments: O.G. is supported by the U.S. Department of Defense (grant W911NF-19-1-0395), U.S. National Science Foundation (grant 1905920), and U.S. Department of Energy (grant DE-SC0008772). [1]: #ref-1 [2]: #ref-3 [3]: #ref-4 [4]: pending:yes [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-2 [12]: #ref-11 [13]: #ref-12 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DFan%26rft.auinit1%253DJ.%2BA.%26rft.volume%253D328%26rft.issue%253D5982%26rft.spage%253D1135%26rft.epage%253D1138%26rft.atitle%253DSelf-Assembled%2BPlasmonic%2BNanoparticle%2BClusters%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1187949%26rft_id%253Dinfo%253Apmid%252F20508125%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzMjgvNTk4Mi8xMTM1IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzY5LzY1MDkvMTMwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [17]: #xref-ref-2-1 "View reference 2 in text" [18]: {openurl}?query=rft.jtitle%253DNat.%2BCommun.%26rft.volume%253D4%26rft.spage%253D2948%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: #xref-ref-3-1 "View reference 3 in text" [20]: {openurl}?query=rft.jtitle%253DACS%2BNano%26rft.volume%253D14%26rft.spage%253D1369%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: #xref-ref-4-1 "View reference 4 in text" [22]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DYi%26rft.auinit1%253DC.%26rft.volume%253D369%26rft.issue%253D6509%26rft.spage%253D1369%26rft.epage%253D1374%26rft.atitle%253DSelf-limiting%2Bdirectional%2Bnanoparticle%2Bbonding%2Bgoverned%2Bby%2Breaction%2Bstoichiometry%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aba8653%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [23]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEzOiIzNjkvNjUwOS8xMzY5IjtzOjQ6ImF0b20iO3M6MjM6Ii9zY2kvMzY5LzY1MDkvMTMwNS5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [24]: #xref-ref-5-1 "View reference 5 in text" [25]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DMeng%26rft.auinit1%253DG.%26rft.volume%253D327%26rft.issue%253D5965%26rft.spage%253D560%26rft.epage%253D563%26rft.atitle%253DThe%2BFree-Energy%2BLandscape%2Bof%2BClusters%2Bof%2BAttractive%2BHard%2BSpheres%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1181263%26rft_id%253Dinfo%253Apmid%252F20110500%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMjcvNTk2NS81NjAiO3M6NDoiYXRvbSI7czoyMzoiL3NjaS8zNjkvNjUwOS8xMzA1LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ== [27]: #xref-ref-6-1 "View reference 6 in text" [28]: {openurl}?query=rft.jtitle%253DJ.%2BCondens.%2BMatter%2BPhys.%26rft.volume%253D24%26rft.spage%253D064113%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: #xref-ref-7-1 "View reference 7 in text" [30]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DChen%26rft.auinit1%253DQ.%26rft.volume%253D469%26rft.issue%253D7330%26rft.spage%253D381%26rft.epage%253D384%26rft.atitle%253DDirected%2Bself-assembly%2Bof%2Ba%2Bcolloidal%2Bkagome%2Blattice.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature09713%26rft_id%253Dinfo%253Apmid%252F21248847%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [31]: /lookup/external-ref?access_num=10.1038/nature09713&link_type=DOI [32]: /lookup/external-ref?access_num=21248847&link_type=MED&atom=%2Fsci%2F369%2F6509%2F1305.atom [33]: /lookup/external-ref?access_num=000286385600048&link_type=ISI [34]: #xref-ref-8-1 "View reference 8 in text" [35]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D550%26rft.spage%253D234%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature23901%26rft_id%253Dinfo%253Apmid%252F28922664%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: /lookup/external-ref?access_num=10.1038/nature23901&link_type=DOI [37]: /lookup/external-ref?access_num=28922664&link_type=MED&atom=%2Fsci%2F369%2F6509%2F1305.atom [38]: #xref-ref-9-1 "View reference 9 in text" [39]: {openurl}?query=rft.jtitle%253DNat.%2BChem.%26rft.volume%253D8%26rft.spage%253D162%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnchem.2420%26rft_id%253Dinfo%253Apmid%252F26791900%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: /lookup/external-ref?access_num=10.1038/nchem.2420&link_type=DOI [41]: /lookup/external-ref?access_num=26791900&link_type=MED&atom=%2Fsci%2F369%2F6509%2F1305.atom [42]: #xref-ref-10-1 "View reference 10 in text" [43]: {openurl}?query=rft.jtitle%253DACS%2BNano%26rft.volume%253D14%26rft.spage%253D6823%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: #xref-ref-11-1 "View reference 11 in text" [45]: {openurl}?query=rft.jtitle%253DNat.%2BCommun.%26rft.volume%253D11%26rft.spage%253D2279%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [46]: #xref-ref-12-1 "View reference 12 in text" [47]: {openurl}?query=rft.jtitle%253DNat.%2BCommun.%26rft.volume%253D6%26rft.spage%253D6912%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fncomms7912%26rft_id%253Dinfo%253Apmid%252F25903309%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [48]: /lookup/external-ref?access_num=10.1038/ncomms7912&link_type=DOI [49]: /lookup/external-ref?access_num=25903309&link_type=MED&atom=%2Fsci%2F369%2F6509%2F1305.atom
领域气候变化 ; 资源环境
URL查看原文
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/294090
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Oleg Gang. Reactive polymers guide nanoparticle clustering[J]. Science,2020.
APA Oleg Gang.(2020).Reactive polymers guide nanoparticle clustering.Science.
MLA Oleg Gang."Reactive polymers guide nanoparticle clustering".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Oleg Gang]的文章
百度学术
百度学术中相似的文章
[Oleg Gang]的文章
必应学术
必应学术中相似的文章
[Oleg Gang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。