GSTDTAP  > 气候变化
DOI10.1126/science.abe1739
The dangers of Arctic zombie wildfires
Masoud Irannezhad; Junguo Liu; Behzad Ahmadi; Deliang Chen
2020-09-04
发表期刊Science
出版年2020
英文摘要In June, blistering wildfires raged within the Arctic Circle for the second successive year ([ 1 ][1]). Posing no direct threats to human life or property, Arctic wildfires are usually allowed to burn unabated. They can then smolder beneath the Arctic Circle's blanket peat through winter and reignite during early spring when temperatures rise. Scientists attribute this year's blazes in the northern polar region to persistent remnants of wildfires from the summer of 2019 ([ 2 ][2]). In addition to changing ecosystems within the scorched perimeter, these so-called Arctic zombie wildfires ([ 2 ][2]) amplify climate warming by releasing carbon from soil and affect human health around the planet by releasing particulates into the air ([ 3 ][3]). To address these fires and their interaction with other components of the Earth system, researchers must collect more data and update models to account for these feedbacks. It is crucial to understand what conditions cause the fires as well as the effects of the fires on the environment. The growing regularity of Arctic zombie wildfires demonstrates the risks of compound climate events ([ 4 ][4]) under global warming. These wildfires shed light on the domino effects of coinciding, multiple, interdependent natural hazards ([ 5 ][5]) within the Arctic Circle, particularly extreme drought and persistent heat waves. Climatic drivers of wildfires within the Arctic Circle—including temperature ([ 6 ][6]), dry airflow ([ 7 ][7]), lightning frequency ([ 8 ][8]), and wind speed ([ 9 ][9])—are increasing, making wildfire recurrence likely ([ 10 ][10]). Yet our knowledge about the fires is largely limited to the past 2 years ([ 3 ][3]). We lack sufficient data about the location and size of roasting areas, the amount of atmospheric heat-trapping greenhouse gas (CO2 and CH4) emissions, the paths of the smoke plumes, and the sites of fire-related black carbon deposition ([ 3 ][3]). To better understand and manage these fires, researchers should comprehensively assess the cascading risks ([ 4 ][4]) that lead to their ignition and endurance, such as soot impacts on snow and ice covers. Theoretical wildfire models should be updated to explain swelling Arctic blazes and consider changes in their environmental drivers (such as peat fuel) and climatic drivers (such as extreme winds). Researchers should identify and assess both direct and indirect environmental and socioeconomic impacts of the fires and determine the global challenges for humanity that are likely to result, including the future climate risk that compound events related to the fires could induce. Immediate actions and sustained efforts at national and international scales are needed to mitigate Arctic zombie wildfires through global multidisciplinary collaboration. 1. [↵][11]1. S. Sengupta , “Intense Arctic wildfires set a pollution record,” The New York Times (2020). 2. [↵][12]1. A. Freedman , “‘Zombie fires’ are erupting in Alaska and likely Siberia, signaling severe Arctic fire season may lie ahead,” The Washington Post (2020). 3. [↵][13]1. M.-J. Viñas , “NASA studies how Arctic wildfires change the world,” NASA's Earth Science News Team (2019). 4. [↵][14]1. J. Zscheischler et al ., Nat. Clim. Change 8, 469 (2018). [OpenUrl][15] 5. [↵][16]1. A. AghaKouchak et al ., Nature 561, 458 (2018). [OpenUrl][17] 6. [↵][18]1. T.F. Stocker et al Intergovernmental Panel on Climate Change (IPCC)“Climate change 2013: The physical science basis,” T.F. Stocker et al., Eds. (Cambridge University Press, 2013). 7. [↵][19]1. C. L. Archer, 2. K. Caldeira , Geophys. Res. Lett. 35, L08803 (2008). [OpenUrl][20][CrossRef][21] 8. [↵][22]1. S. Veraverbeke et al ., Nat. Clim. Change 7, 529 (2017). [OpenUrl][23] 9. [↵][24]1. A. Devis et al ., Environ. Res. Lett. 13, 064012 (2018). [OpenUrl][25] 10. [↵][26]1. Y. Pan et al ., Science 333, 988 (2011). [OpenUrl][27][Abstract/FREE Full Text][28] [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #xref-ref-1-1 "View reference 1 in text" [12]: #xref-ref-2-1 "View reference 2 in text" [13]: #xref-ref-3-1 "View reference 3 in text" [14]: #xref-ref-4-1 "View reference 4 in text" [15]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChange%26rft.volume%253D8%26rft.spage%253D469%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: #xref-ref-5-1 "View reference 5 in text" [17]: {openurl}?query=rft.jtitle%253DNature%26rft.volume%253D561%26rft.spage%253D458%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: #xref-ref-6-1 "View reference 6 in text" [19]: #xref-ref-7-1 "View reference 7 in text" [20]: {openurl}?query=rft.jtitle%253DGeophys.%2BRes.%2BLett.%26rft.volume%253D35%26rft.spage%253DL08803%26rft_id%253Dinfo%253Adoi%252F10.1029%252F2008GL033614%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [21]: /lookup/external-ref?access_num=10.1029/2008GL033614&link_type=DOI [22]: #xref-ref-8-1 "View reference 8 in text" [23]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChange%26rft.volume%253D7%26rft.spage%253D529%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: #xref-ref-9-1 "View reference 9 in text" [25]: {openurl}?query=rft.jtitle%253DEnviron.%2BRes.%2BLett.%26rft.volume%253D13%26rft.spage%253D064012%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [26]: #xref-ref-10-1 "View reference 10 in text" [27]: {openurl}?query=rft.jtitle%253DScience%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.1201609%26rft_id%253Dinfo%253Apmid%252F21764754%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [28]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzMzMvNjA0NS85ODgiO3M6NDoiYXRvbSI7czoyNToiL3NjaS8zNjkvNjUwOC8xMTcxLjIuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/293253
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Masoud Irannezhad,Junguo Liu,Behzad Ahmadi,et al. The dangers of Arctic zombie wildfires[J]. Science,2020.
APA Masoud Irannezhad,Junguo Liu,Behzad Ahmadi,&Deliang Chen.(2020).The dangers of Arctic zombie wildfires.Science.
MLA Masoud Irannezhad,et al."The dangers of Arctic zombie wildfires".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Masoud Irannezhad]的文章
[Junguo Liu]的文章
[Behzad Ahmadi]的文章
百度学术
百度学术中相似的文章
[Masoud Irannezhad]的文章
[Junguo Liu]的文章
[Behzad Ahmadi]的文章
必应学术
必应学术中相似的文章
[Masoud Irannezhad]的文章
[Junguo Liu]的文章
[Behzad Ahmadi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。