GSTDTAP  > 气候变化
DOI10.1126/science.abb6310
A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis
Justin A. North; Adrienne B. Narrowe; Weili Xiong; Kathryn M. Byerly; Guanqi Zhao; Sarah J. Young; Srividya Murali; John A. Wildenthal; William R. Cannon; Kelly C. Wrighton; Robert L. Hettich; F. Robert Tabita
2020-08-28
发表期刊Science
出版年2020
英文摘要Soil bacteria have a range of metabolic pathways that contribute to acquiring and recycling nutrients and carbon. Curiously, some of these organisms give off ethylene gas when starved for sulfur under anaerobic conditions. North et al. traced the source of ethylene to a small, sulfur-containing organic molecule produced by certain reactions in cells. Growing cells in sulfur-limiting conditions enabled them to identify the enzymes involved in sulfur salvage, and the concomitant ethylene production, through this pathway. Methane and ethane were also observed as products when appropriate substrates were provided. The key genes involved are distantly related to nitrogenase and several other reductase enzymes found in bacteria and archaea. The involvement of such nitrogenase-like genes in sulfur metabolism highlights the potential of unexplored diversity in this family of enzymes and raises many mechanistic and evolutionary questions that are now ripe for exploration. Science , this issue p. [1094][1] Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C–S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis. [1]: /lookup/doi/10.1126/science.abb6310
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/293226
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Justin A. North,Adrienne B. Narrowe,Weili Xiong,et al. A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis[J]. Science,2020.
APA Justin A. North.,Adrienne B. Narrowe.,Weili Xiong.,Kathryn M. Byerly.,Guanqi Zhao.,...&F. Robert Tabita.(2020).A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis.Science.
MLA Justin A. North,et al."A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Justin A. North]的文章
[Adrienne B. Narrowe]的文章
[Weili Xiong]的文章
百度学术
百度学术中相似的文章
[Justin A. North]的文章
[Adrienne B. Narrowe]的文章
[Weili Xiong]的文章
必应学术
必应学术中相似的文章
[Justin A. North]的文章
[Adrienne B. Narrowe]的文章
[Weili Xiong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。