GSTDTAP  > 地球科学
DOI10.1016/j.atmosres.2020.104880
Data assimilation of a dense wind profiler network and its impact on convective forecasting
Wang, Cheng1; Chen, Yaodeng1; Chen, Min2; Shen, Jie1
2020-07-01
发表期刊ATMOSPHERIC RESEARCH
ISSN0169-8095
EISSN1873-2895
出版年2020
卷号238
文章类型Article
语种英语
国家Peoples R China
英文摘要

Two momentum control variable schemes are typically used in most data assimilation systems: stream function and unbalanced velocity potential (psi/chi(u) scheme) and eastward and northward velocity (U/V scheme). The wind profiler radar (profiler) plays an important role in the expansion of meteorological observations networks. In this study, the impacts of two momentum control variable schemes on assimilating a dense wind profiler network are discussed based on the single profiler station observation tests and six convective rainfall events cycling experiments.


Single profiler station observation tests indicate that profiler data assimilation is sensitive to control variables. The dynamical increments using U/V scheme contain more elaborate structure, which contributes to valuing the straightforward effects of profiler observations objectively. By contrast, unrealistic increments occur around the observation station in the experiment using psi/chi(u) scheme. Six continuous cycling experiments further demonstrate that, for convective rainfall events, experiment using U/V scheme leads to more skillful quantitative precipitation forecasts of convective rainfall. Diagnostic analysis results show that analysis using psi/chi(u) scheme prevents a good fitting to the profiler data, and accurate dynamical analysis containing abundant small-scale disturbances are the main reason for improving precipitation prediction of convective rainfall when U/V scheme is adopted.


英文关键词Data assimilation Wind profiler radar observation Momentum control variables Numerical weather prediction
领域地球科学
收录类别SCI-E
WOS记录号WOS:000525323500013
WOS关键词VARIATIONAL DATA ASSIMILATION
WOS类目Meteorology & Atmospheric Sciences
WOS研究方向Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/289271
专题地球科学
作者单位1.Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Key Lab Meteorol Disaster,Minist Educ KLME, Joint Int Res Lab Climate & Environm Change ILCEC, Nanjing 210044, Peoples R China;
2.CMA, Inst Urban Meteorol, Beijing 100089, Peoples R China
推荐引用方式
GB/T 7714
Wang, Cheng,Chen, Yaodeng,Chen, Min,et al. Data assimilation of a dense wind profiler network and its impact on convective forecasting[J]. ATMOSPHERIC RESEARCH,2020,238.
APA Wang, Cheng,Chen, Yaodeng,Chen, Min,&Shen, Jie.(2020).Data assimilation of a dense wind profiler network and its impact on convective forecasting.ATMOSPHERIC RESEARCH,238.
MLA Wang, Cheng,et al."Data assimilation of a dense wind profiler network and its impact on convective forecasting".ATMOSPHERIC RESEARCH 238(2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Cheng]的文章
[Chen, Yaodeng]的文章
[Chen, Min]的文章
百度学术
百度学术中相似的文章
[Wang, Cheng]的文章
[Chen, Yaodeng]的文章
[Chen, Min]的文章
必应学术
必应学术中相似的文章
[Wang, Cheng]的文章
[Chen, Yaodeng]的文章
[Chen, Min]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。