GSTDTAP  > 气候变化
Sustainable nylon production made possible by bacteria discovery
admin
2020-08-13
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)
IMAGE

IMAGE: Working with adipic acid bacteria in the Wallace Lab, University of Edinburgh view more 

Credit: The Wallace Lab, University of Edinburgh

Nylon manufacture could be revolutionised by the discovery that bacteria can make a key chemical involved in the process, without emitting harmful greenhouse gases.

Scientists have developed a sustainable method of making one of the most valuable industrial chemicals in the world - known as adipic acid - which is a key component of the material.

More than two million tonnes of the versatile fabric - used to make clothing, furniture and parachutes - is produced globally each year, with a market value of around £5 billion.

Industrial production of adipic acid relies on fossil fuels and produces large amounts of nitrous oxide - a greenhouse gas three hundred times more potent than carbon dioxide. A sustainable production method is urgently required to reduce the damage caused to the environment, the team says.

Scientists from the University of Edinburgh altered the genetic code of the common bacteria E.coli in the lab. The modified cells were grown in liquid solutions containing a naturally occurring chemical, called guaiacol, which is the main component of a compound that gives plants their shape.

Following a 24-hour incubation period, the modified bacteria transformed the guaiacol into adipic acid, without producing nitrous oxide.

The environmentally friendly approach could be scaled up to make adipic acid on an industrial scale, researchers say.

The study is published in ACS Synthetic Biology. It was funded by the Carnegie Trust and UK Research and Innovation.

Lead author Jack Suitor, a PhD student in the University of Edinburgh's School of Biological Sciences, said the team is continually exploring new ways of using bacteria to produce chemicals.

He said: "I am really excited by these results. It is the first time adipic acid has been made directly from guaiacol, which is one of the largest untapped renewable resources on the planet. This could entirely change how nylon is made."

Dr Stephen Wallace, Principle Investigator of the study, and a UKRI Future Leaders Fellow suggested microbes could help solve many other problems facing society.

He said: "If bacteria can be programmed to help make nylon from plant waste - something that cannot be achieved using traditional chemical methods - we must ask ourselves what else they could do, and where the limits lie. We are all familiar with the use of microbes to ferment food and beer - now we can ferment materials and medicines. The possibilities of this approach to create a sustainable future are staggering."

###

For further information, please contact: Rhona Crawford, Press and PR Office, 0131 650 2246, rhona.crawford@ed.ac.uk

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/287271
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Sustainable nylon production made possible by bacteria discovery. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。