GSTDTAP  > 地球科学
DOI10.5194/acp-2020-624
A 3D-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity
Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol
2020-07-24
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要Variations in the atmospheric oxidative capacity, largely determined by variations in the hydroxyl radical (OH), form a key uncertainty in many greenhouse and other pollutant budgets, such as that of methane (CH4). Methyl chloroform (MCF) is an often-adopted tracer to indirectly put observational constraints on variations in OH. We investigated the budget of MCF in a 4DVAR inversion using the atmospheric transport model TM5, for the period 1998–2018, with the objective to derive information on interannual variations in OH and in its spatial distribution.

We derived interannual variations in the global oxidation of MCF that bring simulated mole fractions of MCF within 1–2 % of the assimilated observations from the NOAA-GMD surface network at most sites. Additionally, the posterior simulations better reproduce aircraft observations used for independent validation. The derived OH variations showed robustness with respect to the prior MCF emissions and the prior OH distribution. The interannual variations were typically small (< 3 %/year), with no significant longterm trend in OH.

The inverse system found strong adjustments of the latitudinal distribution of OH, with systematic increases in tropical OH and decreases in extra-tropical OH (both up to 30 %). These spatial adjustments were driven by intrahemispheric biases in simulated MCF mole fractions, which have not been identified in previous studies. Given the unexpectedly large amplitude of these adjustments and a residual bias in intrahemispheric gradients, we suggest a reversal in the extratropical ocean sink of MCF in response to declining atmospheric MCF abundance (as hypothesized in Wennberg et al., 2004). This reversal provides a more realistic explanation for the biases, possibly complimentary to adjustments in the OH distribution.

While we identified significant added value in the use of a 3D transport model over simpler box models, we also found a trade-off in computational expense and convergence problems. However, although the signals are small compared to assuming interannually repeating OH, the derived variations better match the global MCF observations and are relevant for studying the budget of e.g. CH4.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/286676
专题地球科学
推荐引用方式
GB/T 7714
Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol. A 3D-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity[J]. Atmospheric Chemistry and Physics,2020.
APA Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol.(2020).A 3D-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity.Atmospheric Chemistry and Physics.
MLA Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol."A 3D-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol]的文章
百度学术
百度学术中相似的文章
[Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol]的文章
必应学术
必应学术中相似的文章
[Stijn Naus, Stephen A. Montzka, Prabir K. Patra, and Maarten C. Krol]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。