Global S&T Development Trend Analysis Platform of Resources and Environment
DOI | 10.5194/acp-20-9115-2020 |
Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses | |
Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara | |
2020-07-31 | |
发表期刊 | Atmospheric Chemistry and Physics
![]() |
出版年 | 2020 |
英文摘要 | This paper reports on a project to compare the representation of the semiannual oscillation (SAO) in the equatorial stratosphere and lower mesosphere within six major global atmospheric reanalysis datasets and with recent satellite Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) and Microwave Limb Sounder (MLS) observations. All reanalyses have a good representation of the quasi-biennial oscillation (QBO) in the equatorial lower and middle stratosphere and each displays a clear SAO centered near the stratopause. However, the differences among reanalyses are much more substantial in the SAO region than in the QBO-dominated region. The degree of disagreement among the reanalyses is characterized by the standard deviation (SD) of the monthly mean zonal wind and temperature; this depends on latitude, longitude, height, and time. The zonal wind SD displays a prominent equatorial maximum that increases with height, while the temperature SD reaches a minimum near the Equator and is largest in the polar regions. Along the Equator, the zonal wind SD is smallest around the longitude of Singapore, where consistently high-quality near-equatorial radiosonde observations are available. Interestingly, the near-Singapore minimum in SD is evident to at least ∼3 hPa, i.e., considerably higher than the usual ∼10 hPa ceiling for in situ radiosonde observations. Our measurement of the agreement among the reanalyses shows systematic improvement over the period considered (1980–2016), up to near the stratopause. Characteristics of the SAO at 1 hPa, such as its detailed time variation and the displacement off the Equator of the zonal wind SAO amplitude maximum, differ significantly among the reanalyses. Disagreement among the reanalyses becomes still greater above 1 hPa. One of the reanalyses in our study also has a version produced without assimilating satellite observations, and a comparison of the SAO in these two versions demonstrates the very great importance of satellite-derived temperatures in the realistic analysis of the tropical upper stratospheric circulation. |
领域 | 地球科学 |
URL | 查看原文 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://119.78.100.173/C666/handle/2XK7JSWQ/286566 |
专题 | 地球科学 |
推荐引用方式 GB/T 7714 | Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara. Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses[J]. Atmospheric Chemistry and Physics,2020. |
APA | Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara.(2020).Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses.Atmospheric Chemistry and Physics. |
MLA | Yoshio Kawatani, Toshihiko Hirooka, Kevin Hamilton, Anne K. Smith, and Masatomo Fujiwara."Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses".Atmospheric Chemistry and Physics (2020). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论