GSTDTAP  > 气候变化
Newly discovered mutation could point to heart disease therapeutic target
admin
2020-08-07
发布年2020
语种英语
国家美国
领域气候变化 ; 地球科学 ; 资源环境
正文(英文)

Baltimore, MD-- New work led by Carnegie's Meredith Wilson and Steve Farber identifies a potential therapeutic target for clogged arteries and other health risks that stem from an excess of harmful fats in the bloodstream. Their findings are published by PLOS Genetics.

"Cardiovascular disease occurs when lipids from the blood plasma are deposited in the walls of blood vessels, ultimately restricting blood flow," explained Farber, who specializes in elucidating how cells process lipids. "This complex disease affects about a third of the world's population, so improving our understanding of the mechanisms that regulate the levels of blood lipids has important public health implications."

Fat molecules, also called lipids, such as cholesterol and triglycerides are shuttled around the circulatory system by a protein called Apolipoprotein-B, or ApoB for short. These complexes of lipid and protein are called ApoB-containing lipoproteins and are essential for transporting lipids from the intestine and liver to the tissues of the body. However, because they can also cause cardiovascular disease, they are commonly known as "bad cholesterol."

In this new research, Wilson, Farber and their colleagues--including Carnegie's Aidan Danoff, Monica Hensley, Vanessa Quinlivan, James Thierer and Frederick Tan--focused on a protein that is critical for the synthesis of ApoB-containing lipoproteins. This protein, called MTP, or microsomal triglyceride transfer protein, is highly conserved in animals, from insects to humans. MTP loads lipids onto ApoB, a key initial step in the synthesis of ApoB-containing lipoproteins.

Normally, MTP can transfer different types of lipids to ApoB, including triglycerides, which are a major source of energy, and phospholipids, the building-blocks of membranes in the cell. However, the researchers revealed for the first time a mutation in MTP that blocks the loading of triglycerides, but not phospholipids, onto ApoB.

"The separation of these two transfer functions was unexpected and is important, because high triglyceride levels in lipoproteins are correlated with bad clinical outcomes like diabetes and heart disease," said lead author Wilson.

Previously identified mutations in MTP that prevent both transfer functions of the protein cause a malabsorption syndrome, in which the intestines have difficulty absorbing fats and fat-soluble vitamins from the diet. This can result in gastrointestinal distress or more serious problems, such as malnutrition or severe weight loss. However, zebrafish with this newly identified mutation do not exhibit malabsorption or growth defects, because they can still transfer phospholipids to make ApoB-containing lipoproteins.

For years, MTP has been considered a possible therapeutic target to help lower triglyceride levels in the blood and prevent cardiovascular disease. However, the existing chemical inhibitors of MTP are too effective and block all MTP function, which can cause intestinal fat malabsorption and a dangerous accumulation of fat in the liver.

"Our study opens the door for the design of more specific MTP inhibitors that mimic this new mutation and selectively block triglyceride transfer to ApoB," concluded Wilson. "Our data suggests that this type of inhibitor could reduce circulating triglyceride levels without the risk of unpleasant and serious side effects in the intestine and liver."

###

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

URL查看原文
来源平台EurekAlert
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/285897
专题气候变化
地球科学
资源环境科学
推荐引用方式
GB/T 7714
admin. Newly discovered mutation could point to heart disease therapeutic target. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。