GSTDTAP  > 资源环境科学
Researchers Identify Factor Behind 2017 Oroville Dam Spillways Incident
admin
2020-07-22
发布年2020
语种英语
国家美国
领域资源环境
正文(英文)
The repaired main spillway of Oroville Dam in April 2019. Photo: Kevin Grow/Calif. Dept. of Water Resources

The repaired main spillway of Oroville Dam in April 2019. Photo: Kevin Grow/Calif. Dept. of Water Resources

In a February 2017 incident, failures in the spillways of Oroville Dam forced the evacuation of 188,000 people and caused $1 billion in damage repairs.

According to scientists, a warmer climate might create more dangerous events like this.

Researchers at Scripps Institution of Oceanography at the University of California San Diego and the University of Colorado analyzed the event to understand why there was such a large inflow of water into the reservoir behind the dam leading up to the breach. They were interested in the potential role of intense “atmospheric river” storms, phenomena that transport large amounts of water vapor in focused “rivers” of precipitation to coastal areas.

A team led by Brian Henn, a former researcher at the Center for Western Weather and Water Extremes (CW3E) at Scripps Oceanography, found that the February 2017 atmospheric river sequence, while intense, was not extraordinary in terms of the amount of rain and snow it delivered. 

What was extraordinary, say the researchers, was the unusually deep snow recorded in the northern Sierra Nevada mountains before the storm event. Subsequently, several records were set for how much snowmelt occurred during the atmospheric river. The melt took place because of unusually warm and wet conditions during the atmospheric river, and it increased water available for runoff by 37 percent over rain alone, straining the capacity of California’s second-largest reservoir.

The researchers found that snowmelt in the Lake Oroville watershed reached 200-400 millimeters (8-16 inches) in some areas that additionally received up to 500 millimeters of rain (20 inches). Collectively, the large influx of water (71-91 centimeters [28-36 inches] in places) overwhelmed soil storage and resulted in tremendous runoff.

“Our findings suggest that without the unusual warmth that caused  extreme snowmelt from the atmospheric river, the inflows to Lake Oroville would have been less and the situation around the spillway failures may have been less critical,” Henn said.

The study appeared July 16 in the journal Geophysical Research Letters. The authors received support from NASA and the California Department of Water Resources.

Atmospheric rivers, phenomena that have only been widely understood in the past 20 years, will become more variable and play larger roles in extreme flood events in places around the world like California as the climate warms and changes, researchers believe. The storms can deliver torrential rains or no precipitation at all for reasons scientists are trying to understand.

The risk is highest, say scientists, when several factors converge, such as in February 2017, when deep and extensive existing snowpack -- itself the product of colder atmospheric rivers earlier in the winter -- was followed by four to five days of warm, wet, windy conditions. This sequence of storms contributed to the second-largest runoff into Lake Oroville in the last 30 years.

Multiple studies have projected that the risk of extreme snowmelt similar to what was seen above Lake Oroville will increase in response to climate change as atmospheric rivers become warmer and wetter.

After a series of intense atmospheric river-driven storms at the beginning of 2017, dam managers noticed breaches in Lake Oroville’s primary concrete spillway after heavy outflows. As high flows into Lake Oroville continued and water began to flow over the emergency spillway, officials briefly issued evacuation orders to 188,000 people living downstream on Feb. 12, 2017. Costs of repairs to the spillways, completed in November 2018, totaled $1.1 billion.

"We know that climate change is expected to increase the intensity of storm events in the Sierra Nevada, including extreme melt of deep mountain snowpack,” said University of Colorado researcher and study co-author Keith Musselman. “With our Oroville Dam case study, we highlight an example of potential threats to public safety and infrastructure associated with a warmer and more variable climate.” 

 

Note to broadcast and cable producers: University of California San Diego provides an on-campus satellite uplink facility for live or pre-recorded television interviews. Please phone or email the media contact listed above to arrange an interview.
About Scripps OceanographyScripps Institution of Oceanography at the University of California San Diego, is one of the oldest, largest, and most important centers for global science research and education in the world. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today on every continent and in every ocean. The institution has a staff of more than 1,400 and annual expenditures of approximately $195 million from federal, state, and private sources. Scripps operates oceanographic research vessels recognized worldwide for their outstanding capabilities. Equipped with innovative instruments for ocean exploration, these ships constitute mobile laboratories and observatories that serve students and researchers from institutions throughout the world. Birch Aquarium at Scripps serves as the interpretive center of the institution and showcases Scripps research and a diverse array of marine life through exhibits and programming for more than 430,000 visitors each year. Learn more at scripps.ucsd.edu and follow us at Facebook, Twitter, and Instagram.About UC San DiegoAt the University of California San Diego, we embrace a culture of exploration and experimentation. Established in 1960, UC San Diego has been shaped by exceptional scholars who aren’t afraid to look deeper, challenge expectations and redefine conventional wisdom. As one of the top 15 research universities in the world, we are driving innovation and change to advance society, propel economic growth and make our world a better place. Learn more at www.ucsd.edu.
This story appears in explorations now, Scripps Institution of Oceanography's award-winning ocean and earth science magazine. Sign up to receive our free monthly story roundup.
URL查看原文
来源平台Scripps Institution of Oceanography
文献类型新闻
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/285175
专题资源环境科学
推荐引用方式
GB/T 7714
admin. Researchers Identify Factor Behind 2017 Oroville Dam Spillways Incident. 2020.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[admin]的文章
百度学术
百度学术中相似的文章
[admin]的文章
必应学术
必应学术中相似的文章
[admin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。