GSTDTAP  > 地球科学
DOI10.5194/acp-2020-570
Measurement report: Evaluation of sources and mixing state of black carbon aerosol under the background of emission reduction in the North China Plain: implications for radiative effect
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
2020-07-15
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要Accurate understanding of sources and mixing state of black carbon (BC) aerosol is essential for assessing its impacts on air quality and climatic effect. Here, a winter campaign (December 2017–January 2018) was conducted in the North China Plain (NCP) to evaluate the sources, coating composition, and radiative effect of BC under the background of emission reduction since 2013. Results show that liquid fossil fuel source (i.e., traffic emission) and solid fuel source (i.e., biomass and coal burning) contributed 69 % and 31 % to the total BC mass, respectively, using a multiwavelength optical approach combined with the source-based aerosol absorption Ångström exponent values. The air quality model indicates that local emission was the dominant contributor to BC at the measurement site on average, however, emissions in the NCP exerted a critical role for high BC episode. Six classes of BC-containing particles were identified, including (1) BC coated by organic carbon and sulphate (52 % of total BC-containing particles), (2) BC coated by Na and K (24 %), (3) BC coated by K, sulphate, and nitrate (17 %), (4) BC associated with biomass burning (6 %), (5) Pure-BC (1 %), and (6) others (1 %). Different BC sources had distinct impacts on those BC-containing particles. A radiative transfer model estimated that the amount of BC detected can produce an atmospheric forcing of +18.0 W m−2 and a heating rate of 0.5 K day−1. Results presented herein highlight that further reduction of solid fuel combustion-related BC may be a more effective way to mitigate regional warming in the NCP, although larger BC contribution was from liquid fossil fuel source.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/284183
专题地球科学
推荐引用方式
GB/T 7714
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao. Measurement report: Evaluation of sources and mixing state of black carbon aerosol under the background of emission reduction in the North China Plain: implications for radiative effect[J]. Atmospheric Chemistry and Physics,2020.
APA Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao.(2020).Measurement report: Evaluation of sources and mixing state of black carbon aerosol under the background of emission reduction in the North China Plain: implications for radiative effect.Atmospheric Chemistry and Physics.
MLA Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao."Measurement report: Evaluation of sources and mixing state of black carbon aerosol under the background of emission reduction in the North China Plain: implications for radiative effect".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao]的文章
百度学术
百度学术中相似的文章
[Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao]的文章
必应学术
必应学术中相似的文章
[Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。