GSTDTAP  > 地球科学
DOI10.5194/acp-18-13547-2018
Reanalysis intercomparisons of stratospheric polar processing diagnostics
Lawrence, Zachary D.1,2; Manney, Gloria L.1,2; Wargan, Krzysztof3,4
2018-09-25
发表期刊ATMOSPHERIC CHEMISTRY AND PHYSICS
ISSN1680-7316
EISSN1680-7324
出版年2018
卷号18期号:18页码:13547-13579
文章类型Article
语种英语
国家USA
英文摘要

We compare herein polar processing diagnostics derived from the four most recent "full-input" reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis/Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim) reanalysis, the Japanese Meteorological Agency's 55-year (JRA-55) reanalysis, and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower-to-middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex.


Polar minimum temperatures (T-min) and the area of regions having temperatures below PSC formation thresholds (A PSC) show large persistent differences between the reanalyses, especially in the Southern Hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in T-min are as large as 3K at some levels in the SH (1.5K in the Northern Hemisphere - NH), and absolute differences of reanalysis A PSC from the REM up to 1.5% of a hemisphere (0.75% of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: average T-min differences from the REM are generally less than 1K in both hemispheres, and average A PSC differences less than 0.3% of a hemisphere.


The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maxi-mum PV gradients (MPVGs) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVGs showed convergence toward better agreement with the REM after 1999, while NH MPVGs differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically resolved PV for the different reanalyses.


We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general, the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas.


Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to advanced TOVS and other data around 1998-2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.


领域地球科学
收录类别SCI-E
WOS记录号WOS:000445514600002
WOS关键词ANTARCTIC OZONE HOLE ; PROJECT S-RIP ; METEOROLOGICAL ANALYSES ; POTENTIAL VORTICITY ; SOUTHERN-HEMISPHERE ; ERA-INTERIM ; INTERANNUAL VARIABILITY ; VORTEX ; WINTER ; TEMPERATURE
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/28376
专题地球科学
作者单位1.New Mexico Inst Min & Technol, Socorro, NM 87801 USA;
2.NorthWest Res Associates, Socorro, NM 87801 USA;
3.NASA, Goddard Space Flight Ctr, Greenbelt, MD USA;
4.Sci Syst & Applicat Inc, Lanham, MD USA
推荐引用方式
GB/T 7714
Lawrence, Zachary D.,Manney, Gloria L.,Wargan, Krzysztof. Reanalysis intercomparisons of stratospheric polar processing diagnostics[J]. ATMOSPHERIC CHEMISTRY AND PHYSICS,2018,18(18):13547-13579.
APA Lawrence, Zachary D.,Manney, Gloria L.,&Wargan, Krzysztof.(2018).Reanalysis intercomparisons of stratospheric polar processing diagnostics.ATMOSPHERIC CHEMISTRY AND PHYSICS,18(18),13547-13579.
MLA Lawrence, Zachary D.,et al."Reanalysis intercomparisons of stratospheric polar processing diagnostics".ATMOSPHERIC CHEMISTRY AND PHYSICS 18.18(2018):13547-13579.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lawrence, Zachary D.]的文章
[Manney, Gloria L.]的文章
[Wargan, Krzysztof]的文章
百度学术
百度学术中相似的文章
[Lawrence, Zachary D.]的文章
[Manney, Gloria L.]的文章
[Wargan, Krzysztof]的文章
必应学术
必应学术中相似的文章
[Lawrence, Zachary D.]的文章
[Manney, Gloria L.]的文章
[Wargan, Krzysztof]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。