GSTDTAP  > 气候变化
DOI10.1126/science.abc8830
Exercising your mind
Victor A. Ansere; Willard M. Freeman
2020-07-10
发表期刊Science
出版年2020
英文摘要Although the beneficial effects of exercise on the brain and cognition are generally accepted, the mechanisms by which physically active people remain mentally sharp later in life have been unclear. On page 167 of this issue, Horowitz et al. ([ 1 ][1]) demonstrate that the beneficial effects of exercise in mitigating brain aging can be conveyed from exercising mice to sedentary mice through plasma transfer. The authors also provide compelling evidence that the positive effects of exercise on brain aging are at least partially mediated through hepatic mechanisms and identify a promising target for further study. The economic, social, and health consequences of the growing aged population are profound, thus necessitating interventions that promote healthy aging. Interventions to maintain health later into life, such as rapamycin ([ 2 ][2]) and caloric restriction ([ 3 ][3]), have been reported to improve memory and cognition in animal models but are challenging to translate to humans. Approaches such as heterochronic parabiosis (the surgical joining of young and aged animals resulting in plasma exchange) or heterochronic plasma transfer by infusion have gained considerable attention and also offer great promise in rejuvenating the aged hippocampus in mice ([ 4 ][4]). However, regular physical exercise is arguably the most consistently effective health-enhancing strategy to attenuate the age-related deterioration in brain structure and function in laboratory animals and humans ([ 5 ][5]). Using exercise to probe the mechanisms of brain aging could also identify new therapeutic avenues for the maintenance of brain health throughout life. Horowitz et al. transferred plasma from regularly exercising adult or aged mice to aged sedentary mice. This increased the formation of new hippocampal neurons, increased the concentrations of neurotrophic factors, and improved cognition in behavioral tests of the sedentary mice. Potential circulating factors responsible for this effect were identified by a plasma proteomic screen. Among these, the authors found that the glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1), a protein abundant in the liver, was induced by regular exercise in mice. Higher plasma GPLD1 concentrations were also observed in physically active older people (ages 66 to 78) compared to inactive older people. Furthermore, induction of GPLD1 specifically in the mouse liver through in vivo transfection was sufficient to recapitulate the rejuvenative effects of exercise in sedentary mice. GPLD1 hydrolyzes the inositol phosphate linkage in glycosylphosphatidylinositol (GPI) that anchors proteins to membranes, releasing them into the circulation. Horowitz et al. found that this activity of GPLD1 was necessary for the improved cognition and increased hippocampal neurogenesis observed after GPLD1 induction in vivo. Intriguingly, neither liver nor circulating GPLD1 concentrations were found to decline with age, and GPLD1 did not appear to enter the brain from the circulation. This suggests that the beneficial effects of GPLD1 on the hippocampus may involve intermediary factors that are released by peripheral organs and are capable of entering the brain to act directly on the hippocampus (see the figure). This concept is supported by studies such as those that demonstrated the induction of muscle peroxisome proliferator–activated receptor–γ coactivator 1α (PGC-1α) by exercise, which ultimately results in increased circulating concentrations of irisin, a myokine that acts directly on the brain ([ 6 ][6], [ 7 ][7]). Therefore, determining tissue-level targets of circulating GPLD1 as well as the resultant alterations in circulating factors that can cross the blood-brain barrier is crucial to understanding the direct mechanism of action on the brain. Horowitz et al. identified coagulation and complement signaling cascades as possible intermediary factors mediating the effects of GPLD1; however, additional investigation is required to fully understand their role. These findings integrate with the myriad effects of exercise across organ systems that may mediate the positive effects on brain aging ([ 8 ][8]). After exercise, circulating myokines from skeletal muscle ([ 9 ][9]), liver hepatokines ([ 10 ][10]), fat-derived adipokines ([ 11 ][11]), exosomes (a type of extracellular vesicle) ([ 12 ][12]), and metabolites are altered. These factors may work not only directly on the brain but also, as exemplified in the work of Horowitz et al. , through extensive tissue cross-talk. Because exercise has such complex effects, systems biology approaches will be necessary to unravel the intricacies of how exercise contributes to cognitive function ([ 13 ][13]). ![Figure][14] The combined benefits of exercise on the aged brain Exercise may directly affect the brain or involve a myriad of tissues, including the liver, muscle, and adipose tissue. Horowitz et al. demonstrate that exercise-induced glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1) from the liver mediates improved cognition in mice. GPLD1 hydrolyzes glycosylphosphatidylinositol (GPI) linkages that anchor proteins to membranes, releasing them into the circulation. Which proteins are released and how this connects with other exercise-induced factors is unknown. GRAPHIC: V. ALTOUNIAN/ SCIENCE Although hippocampal neurogenesis and behavioral outcomes were tested in mice by Horowitz et al. , the increase of GPLD1 also needs to be tested against other hallmarks of brain aging, including neuroinflammation, synapse pruning, and neurophysiological deficits that have also been shown to cause age-associated cognitive decline ([ 14 ][15]). Studies using GPLD1 in mouse models of neurodegenerative disorders such as Alzheimer's disease may also be warranted. The observation that GPLD1 was increased in exercised mice as well as in physically active humans underlines the robustness of this finding and the potential for future translational studies. The ability to transfer the functional benefits of exercise through plasma adds to current interest in plasma rejuvenation as an intervention to delay or reverse aspects of the aging process. However, the safety and ethical concerns inherent in provision and access to plasma remain to be addressed. These findings also correspond to a prior report that showed the inverse—that the negative effects of age and peripheral muscle injury could be transferred between mice by plasma transfer ([ 15 ][16]). Generally, exercise is thought to prevent only age-associated changes, but an important insight from the study of Horowitz et al. is that exercise also has a rejuvenating effect. This emphasizes the importance of understanding how exercise has broad and advantageous effects on aging. Future studies will need to determine the intensity, duration, and frequency of exercise needed to engage these beneficial effects, particularly in humans. Whether these are acute effects of exercise or the result of chronic activity (the mice had running wheels for >40 days) is a central question to be answered. These findings, along with ongoing clinical studies, should help to provide the public with evidence-based knowledge to guide their own physical activity to promote healthy brain aging. 1. [↵][17]1. A. M. Horowitz et al ., Science 369, 167 (2020) [OpenUrl][18][Abstract/FREE Full Text][19] 2. [↵][20]1. A. Richardson et al ., Exp. Gerontol. 68, 51 (2015). [OpenUrl][21] 3. [↵][22]1. N. Pitsikas, 2. S. Algeri , Neurobiol. Aging 13, 369 (1992). [OpenUrl][23][CrossRef][24][PubMed][25][Web of Science][26] 4. [↵][27]1. S. A. Villeda et al ., Nat. Med. 20, 659 (2014). [OpenUrl][28][CrossRef][29][PubMed][30] 5. [↵][31]1. C. H. Hillman et al ., Nat. Rev. Neurosci. 9, 58 (2008). [OpenUrl][32][CrossRef][33][PubMed][34][Web of Science][35] 6. [↵][36]1. M. V. Lourenco et al ., Nat. Med. 25, 165 (2019). [OpenUrl][37][CrossRef][38][PubMed][39] 7. [↵][40]1. P. Boström et al ., Nature 481, 463 (2012). [OpenUrl][41][CrossRef][42][PubMed][43][Web of Science][44] 8. [↵][45]1. C. Cooper et al ., Cold Spring Harb. Perspect. Med. 8, a029736 (2018). [OpenUrl][46][Abstract/FREE Full Text][47] 9. [↵][48]1. J. Delezie, 2. C. Handschin , Front. Neurol. 9, 698 (2018). [OpenUrl][49][CrossRef][50][PubMed][51] 10. [↵][52]1. J. P. Thyfault, 2. R. S. Rector , Diabetes 69, 517 (2020). [OpenUrl][53][Abstract/FREE Full Text][54] 11. [↵][55]1. S. W. Görgens et al ., Prog. Mol. Biol. Transl. Sci. 135, 313 (2015). [OpenUrl][56][PubMed][57] 12. [↵][58]1. M. Whitham et al ., Cell Metab. 27, 237 (2018). [OpenUrl][59][CrossRef][60][PubMed][61] 13. [↵][62]1. N. J. Hoffman , Cold Spring Harb. Perspect. Med. 7, a029884 (2017). [OpenUrl][63][Abstract/FREE Full Text][64] 14. [↵][65]1. M. P. Mattson, 2. T. V. Arumugam , Cell Metab. 27, 1176 (2018). [OpenUrl][66][CrossRef][67] 15. [↵][68]1. J. Rebo et al ., Nat. Commun. 7, 13363 (2016). [OpenUrl][69] Acknowledgments: Supp orted by NIH grants R01AG05943, R21AG062894, and P30AG050911 and by a Veterans Administration grant I01BX003906. [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: #ref-5 [6]: #ref-6 [7]: #ref-7 [8]: #ref-8 [9]: #ref-9 [10]: #ref-10 [11]: #ref-11 [12]: #ref-12 [13]: #ref-13 [14]: pending:yes [15]: #ref-14 [16]: #ref-15 [17]: #xref-ref-1-1 "View reference 1 in text" [18]: {openurl}?query=rft.jtitle%253DScience%26rft.stitle%253DScience%26rft.aulast%253DHorowitz%26rft.auinit1%253DA.%2BM.%26rft.volume%253D369%26rft.issue%253D6500%26rft.spage%253D167%26rft.epage%253D173%26rft.atitle%253DBlood%2Bfactors%2Btransfer%2Bbeneficial%2Beffects%2Bof%2Bexercise%2Bon%2Bneurogenesis%2Band%2Bcognition%2Bto%2Bthe%2Baged%2Bbrain%26rft_id%253Dinfo%253Adoi%252F10.1126%252Fscience.aaw2622%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [19]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoic2NpIjtzOjU6InJlc2lkIjtzOjEyOiIzNjkvNjUwMC8xNjciO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMC8xNDQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [20]: #xref-ref-2-1 "View reference 2 in text" [21]: {openurl}?query=rft.jtitle%253DExp.%2BGerontol.%26rft.volume%253D68%26rft.spage%253D51%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [22]: #xref-ref-3-1 "View reference 3 in text" [23]: {openurl}?query=rft.jtitle%253DNeurobiology%2Bof%2Baging%26rft.stitle%253DNeurobiol%2BAging%26rft.aulast%253DPitsikas%26rft.auinit1%253DN.%26rft.volume%253D13%26rft.issue%253D3%26rft.spage%253D369%26rft.epage%253D373%26rft.atitle%253DDeterioration%2Bof%2Bspatial%2Band%2Bnonspatial%2Breference%2Band%2Bworking%2Bmemory%2Bin%2Baged%2Brats%253A%2Bprotective%2Beffect%2Bof%2Blife-long%2Bcalorie%2Brestriction.%26rft_id%253Dinfo%253Adoi%252F10.1016%252F0197-4580%252892%252990110-J%26rft_id%253Dinfo%253Apmid%252F1625765%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/external-ref?access_num=10.1016/0197-4580(92)90110-J&link_type=DOI [25]: /lookup/external-ref?access_num=1625765&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [26]: /lookup/external-ref?access_num=A1992HW97400002&link_type=ISI [27]: #xref-ref-4-1 "View reference 4 in text" [28]: {openurl}?query=rft.jtitle%253DNat.%2BMed.%26rft.volume%253D20%26rft.spage%253D659%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnm.3569%26rft_id%253Dinfo%253Apmid%252F24793238%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [29]: /lookup/external-ref?access_num=10.1038/nm.3569&link_type=DOI [30]: /lookup/external-ref?access_num=24793238&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [31]: #xref-ref-5-1 "View reference 5 in text" [32]: {openurl}?query=rft.jtitle%253DNature%2Breviews.%2BNeuroscience%26rft.stitle%253DNat%2BRev%2BNeurosci%26rft.aulast%253DHillman%26rft.auinit1%253DC.%2BH.%26rft.volume%253D9%26rft.issue%253D1%26rft.spage%253D58%26rft.epage%253D65%26rft.atitle%253DBe%2Bsmart%252C%2Bexercise%2Byour%2Bheart%253A%2Bexercise%2Beffects%2Bon%2Bbrain%2Band%2Bcognition.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnrn2298%26rft_id%253Dinfo%253Apmid%252F18094706%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [33]: /lookup/external-ref?access_num=10.1038/nrn2298&link_type=DOI [34]: /lookup/external-ref?access_num=18094706&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [35]: /lookup/external-ref?access_num=000252231600016&link_type=ISI [36]: #xref-ref-6-1 "View reference 6 in text" [37]: {openurl}?query=rft.jtitle%253DNat.%2BMed.%26rft.volume%253D25%26rft.spage%253D165%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fs41591-018-0275-4%26rft_id%253Dinfo%253Apmid%252F30617325%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: /lookup/external-ref?access_num=10.1038/s41591-018-0275-4&link_type=DOI [39]: /lookup/external-ref?access_num=30617325&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [40]: #xref-ref-7-1 "View reference 7 in text" [41]: {openurl}?query=rft.jtitle%253DNature%26rft.stitle%253DNature%26rft.aulast%253DBostrom%26rft.auinit1%253DP.%26rft.volume%253D481%26rft.issue%253D7382%26rft.spage%253D463%26rft.epage%253D468%26rft.atitle%253DA%2BPGC1-%25CE%25B1-dependent%2Bmyokine%2Bthat%2Bdrives%2Bbrown-fat-like%2Bdevelopment%2Bof%2Bwhite%2Bfat%2Band%2Bthermogenesis.%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fnature10777%26rft_id%253Dinfo%253Apmid%252F22237023%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [42]: /lookup/external-ref?access_num=10.1038/nature10777&link_type=DOI [43]: /lookup/external-ref?access_num=22237023&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [44]: /lookup/external-ref?access_num=000299471800031&link_type=ISI [45]: #xref-ref-8-1 "View reference 8 in text" [46]: {openurl}?query=rft.jtitle%253DCold%2BSpring%2BHarb.%2BPerspect.%2BMed.%26rft_id%253Dinfo%253Adoi%252F10.1101%252Fcshperspect.a029736%26rft_id%253Dinfo%253Apmid%252F28495803%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [47]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNzaHBlcnNwZWN0bWVkIjtzOjU6InJlc2lkIjtzOjExOiI4LzQvYTAyOTczNiI7czo0OiJhdG9tIjtzOjIyOiIvc2NpLzM2OS82NTAwLzE0NC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30= [48]: #xref-ref-9-1 "View reference 9 in text" [49]: {openurl}?query=rft.jtitle%253DFront.%2BNeurol.%26rft.volume%253D9%26rft.spage%253D698%26rft_id%253Dinfo%253Adoi%252F10.3389%252Ffneur.2018.00698%26rft_id%253Dinfo%253Apmid%252F30197620%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [50]: /lookup/external-ref?access_num=10.3389/fneur.2018.00698&link_type=DOI [51]: /lookup/external-ref?access_num=30197620&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [52]: #xref-ref-10-1 "View reference 10 in text" [53]: {openurl}?query=rft.jtitle%253DDiabetes%26rft.stitle%253DDiabetes%26rft.aulast%253DThyfault%26rft.auinit1%253DJ.%2BP.%26rft.volume%253D69%26rft.issue%253D4%26rft.spage%253D517%26rft.epage%253D524%26rft.atitle%253DExercise%2BCombats%2BHepatic%2BSteatosis%253A%2BPotential%2BMechanisms%2Band%2BClinical%2BImplications%26rft_id%253Dinfo%253Adoi%252F10.2337%252Fdbi18-0043%26rft_id%253Dinfo%253Apmid%252F32198195%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [54]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6ODoiZGlhYmV0ZXMiO3M6NToicmVzaWQiO3M6ODoiNjkvNC81MTciO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMC8xNDQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [55]: #xref-ref-11-1 "View reference 11 in text" [56]: {openurl}?query=rft.jtitle%253DProg.%2BMol.%2BBiol.%2BTransl.%2BSci.%26rft.volume%253D135%26rft.spage%253D313%26rft_id%253Dinfo%253Apmid%252F26477920%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [57]: /lookup/external-ref?access_num=26477920&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [58]: #xref-ref-12-1 "View reference 12 in text" [59]: {openurl}?query=rft.jtitle%253DCell%2BMetab.%26rft.volume%253D27%26rft.spage%253D237%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.cmet.2017.12.001%26rft_id%253Dinfo%253Apmid%252F29320704%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [60]: /lookup/external-ref?access_num=10.1016/j.cmet.2017.12.001&link_type=DOI [61]: /lookup/external-ref?access_num=29320704&link_type=MED&atom=%2Fsci%2F369%2F6500%2F144.atom [62]: #xref-ref-13-1 "View reference 13 in text" [63]: {openurl}?query=rft.jtitle%253DCold%2BSpring%2BHarb.%2BPerspect.%2BMed.%26rft_id%253Dinfo%253Adoi%252F10.1101%252Fcshperspect.a029884%26rft_id%253Dinfo%253Apmid%252F28348175%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [64]: /lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTQ6ImNzaHBlcnNwZWN0bWVkIjtzOjU6InJlc2lkIjtzOjEyOiI3LzEwL2EwMjk4ODQiO3M6NDoiYXRvbSI7czoyMjoiL3NjaS8zNjkvNjUwMC8xNDQuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9 [65]: #xref-ref-14-1 "View reference 14 in text" [66]: {openurl}?query=rft.jtitle%253DCell%2BMetab.%26rft.volume%253D27%26rft.spage%253D1176%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.cmet.2018.05.011%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [67]: /lookup/external-ref?access_num=10.1016/j.cmet.2018.05.011&link_type=DOI [68]: #xref-ref-15-1 "View reference 15 in text" [69]: {openurl}?query=rft.jtitle%253DNat.%2BCommun.%26rft.volume%253D7%26rft.spage%253D13363%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx
领域气候变化 ; 资源环境
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/283388
专题气候变化
资源环境科学
推荐引用方式
GB/T 7714
Victor A. Ansere,Willard M. Freeman. Exercising your mind[J]. Science,2020.
APA Victor A. Ansere,&Willard M. Freeman.(2020).Exercising your mind.Science.
MLA Victor A. Ansere,et al."Exercising your mind".Science (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Victor A. Ansere]的文章
[Willard M. Freeman]的文章
百度学术
百度学术中相似的文章
[Victor A. Ansere]的文章
[Willard M. Freeman]的文章
必应学术
必应学术中相似的文章
[Victor A. Ansere]的文章
[Willard M. Freeman]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。