GSTDTAP  > 地球科学
DOI10.5194/acp-2020-528
Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment
Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov
2020-06-30
发表期刊Atmospheric Chemistry and Physics
出版年2020
英文摘要There are few long-term datasets of volatile organic compounds (VOCs) in the High Arctic. Furthermore, knowledge about their source regions remains lacking. To address this matter, we report a long-term dataset of highly time-resolved VOC measurements in the High Arctic from April to October 2018. We have utilized a combination of measurement and modeling techniques to characterize the mixing ratios, temporal patterns, and sources of VOCs at Villum Research Station at Station Nord, in Northeast Greenland. Atmospheric VOCs were measured using Proton Transfer-Time of Flight-Mass Spectrometry (PTR-ToF-MS). Ten ions were selected for source apportionment with the receptor model, positive matrix factorization (PMF). A four-factor solution to the PMF model was deemed optimal. The factors identified were Biomass Burning, Marine Cryosphere, Background, and Arctic Haze. The Biomass Burning factor described the variation of acetonitrile and benzene. Back trajectory analysis indicated the influence of active fires in North America and Eurasia. The Marine Cryosphere factor was comprised of carboxylic acids (formic, acetic, and propionic acid) as well as dimethyl sulfide (DMS). This factor displayed a clear diurnal profile during periods of snow and sea ice melt. Back trajectories showed that the source regions for this factor were the coasts around North Greenland and the Arctic Ocean. The Background factor was temporally ubiquitous, with a slight decrease in the summer. This factor was not driven by any individual chemical species. The Arctic Haze factor was dominated by benzene with contributions from oxygenated VOCs. This factor exhibited a maximum in the spring and minima during the summer and autumn. This temporal pattern and species profile are indicative of anthropogenic sources in the mid-latitudes. This study provides seasonal characteristics and sources of VOCs and can help elucidate the processes affecting the atmospheric chemistry and biogeochemical feedback mechanisms in the High Arctic.

领域地球科学
URL查看原文
引用统计
文献类型期刊论文
条目标识符http://119.78.100.173/C666/handle/2XK7JSWQ/281766
专题地球科学
推荐引用方式
GB/T 7714
Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov. Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment[J]. Atmospheric Chemistry and Physics,2020.
APA Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov.(2020).Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment.Atmospheric Chemistry and Physics.
MLA Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov."Atmospheric VOC measurements at a High Arctic site: characteristics and source apportionment".Atmospheric Chemistry and Physics (2020).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov]的文章
百度学术
百度学术中相似的文章
[Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov]的文章
必应学术
必应学术中相似的文章
[Jakob B. Pernov, Rossana Bossi, Thibaut Lebourgeois, Jacob K. Nøjgaard, Rupert Holzinger, Jens L. Hjorth, and Henrik Skov]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。